【題目】如圖,菱形ABCD和菱形AEFG開始完全重合,現(xiàn)將菱形AEFG繞點A順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角∠BAE=α(0°<α<360°),則當α=_____時,菱形的頂點F會落在菱形ABCD的對角線所在的直線上.

【答案】60°或180°或300°

【解析】分析:分別從當點FDB的延長線上時,當點FCA的延長線時,C,OF共線,當點FBD的延長線時,去分析求解即可求得答案.

詳解:如圖(1),當點FDB的延長線上時,

四邊形ABCD是菱形,

ACBD,OA=AC,

∴∠AOF=90,

AF=AC,

OA=AF,

cosCAF=

∴∠CAF=60;

即旋轉(zhuǎn)角為60;

如圖(2),當點FCA的延長線時,C,OF共線,

COF=180,

旋轉(zhuǎn)角為180;

如圖(3),當點FBD的延長線時,

四邊形ABCD是菱形,

ACBD,OA=AC,

∴∠AOF=90,

AF=AC

OA=AF,

cosCAF=,

∴∠CAF=60

即旋轉(zhuǎn)角為:36060=300;

故答案為:60180300.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線ymx2+6mxnm0)與x軸交于AB兩點(點A在點B左側(cè)),頂點為C,拋物線與y軸交于點D,直線BCy軸于ESABC:SAEC = 23

1)求點A的坐標;

2)將ACO繞點C順時針旋轉(zhuǎn)一定角度后,點AB重合,此時點O恰好也在y軸上,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx+bkb為常數(shù)分別與x軸、y軸交于點A﹣40)、B0,3),拋物線y=﹣x2+2x+1y軸交于點C,E在拋物線y=﹣x2+2x+1的對稱軸上移動,F在直線AB上移動CE+EF的最小值是(  。

A. 1.4 B. 2.5 C. 2.8 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E在AD的延長線上,下列條件中能判斷AB∥CD的是( )

A.∠C=∠CDEB.∠ABD=∠CBDC.∠ABD=∠CDBD.∠C+∠ADC=180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABBCCDAD4,∠DAB=∠B=∠C=∠D90°E,F分別是邊BC,CD上的點,且CEBC,FCD的中點,問AEF是什么三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將口ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F.

(1)求證:△ABF≌△ECF

(2)若∠AFC=2∠D,連接AC、BE.求證:四邊形ABEC是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,菱形ABCD中,△EFP的頂點E、F、P分別在線段AB、AD、AC上,且EP=FP.

(1)證明:∠EPF+∠BAD=180°.

(2)若∠BAD=120°(如圖2),證明:AE+AF=AP.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A在數(shù)軸上對應(yīng)的數(shù)為x,點B對應(yīng)的數(shù)為y,且點O為數(shù)軸上的原點,且.

1)點A對應(yīng)的數(shù)為______;點B對應(yīng)的數(shù)為______;線段的長度為_______;

2)若數(shù)軸上有一點C,且,求點C在數(shù)軸上對應(yīng)的數(shù);

3)若點PA點出發(fā)沿數(shù)軸的正方向以每秒2個單位的速度運動,同時Q點從B點出發(fā)沿數(shù)軸的負方向以每秒4個單位長度的速度運動,運動時間為t秒,當時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一組數(shù)據(jù)12,3,4,x的平均數(shù)與中位數(shù)相同,則實數(shù)x的值不可能( )

A. 0 B. 2.5 C. 3 D. 5

查看答案和解析>>

同步練習冊答案