【題目】如圖,把一塊三角板放在直角坐標系第一象限內(nèi),其中30°角的頂點A落在y軸上,直角頂點C落在x軸的(,0)處,∠ACO=60°,點D為AB邊上中點,將△ABC沿x軸向右平移,當點A落在直線y=x﹣3上時,線段CD掃過的面積為_____.
【答案】12
【解析】
根據(jù)函數(shù)解析式和直角三角形的性質(zhì)求出點D平移的距離和CD的長度,然后證明∠DCO=90°,再根據(jù)矩形的面積公式計算即可.
解:∵點C的坐標為(,0),∠ACO=60°,
∴AC=,OA=3,
∴點A的坐標為(0,3),
在y=x﹣3中,當y=3時,即3=x3,解得x=6,
∴當點A落在直線y=x3上時,點A平移的距離為6,此時點D平移的距離也是6,
∵∠ACO=60°,點D為AB邊上中點,∠ACB=90°,∠CAD=30°,
∴DA=DC,
∴∠DCA=∠DAC=30°,
∴∠DCO=90°,
∵AC=,∠ACB=90°,∠CAB=30°,
∴BC2+AC2=AB2,即,
∴AB=4,
∴CD=2,
∴線段CD掃過的面積為:2×6=12,
故答案為:12.
科目:初中數(shù)學 來源: 題型:
【題目】△ABC是等邊三角形,點E、F分別為射線AC、射線CB上兩點,CE=BF,直線EB、AF交于點D.
(1)當E、F在邊AC、BC上時如圖,求證:△ABF≌△BCE.
(2)當E在AC延長線上時,如圖,AC=10,S△ABC=25,EG⊥BC于G,EH⊥AB于H,HE=8,EG= .
(3)E、F分別在AC、CB延長線上時,如圖,BE上有一點P,CP=BD,∠CPB是銳角,求證:BP=AD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線 與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=–1,P為拋物線上第二象限的一個動點.
(1)求拋物線的解析式并寫出其頂點坐標;
(2)當點P的縱坐標為2時,求點P的橫坐標;
(3)當點P在運動過程中,求四邊形PABC面積最大時的值及此時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD是正方形,點P在直線BC上,點G在直線AD上(P,G不與正方形頂點重合,且在CD的同側(cè)),PD=PG,DF⊥PG于點H,交直線AB于點F,將線段PG繞點P逆時針旋轉(zhuǎn)90°得到線段PE,連結EF.
(1)如圖1,當點P與點G分別在線段BC與線段AD上時.
①請直接寫出線段DG與PC的數(shù)量關系(不要求證明);
②求證:四邊形PEFD是菱形;
(2)如圖2,當點P與點G分別在線段BC與線段AD的延長線上時,請猜想四邊形PEFD是怎樣的特殊四邊形,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為推動陽光體育活動的廣泛開展,引導學生積極參加體育鍛煉,學校準備購買一批運動鞋供學生借用.現(xiàn)從各年級隨機抽取了部分學生的鞋號,繪制了如下的統(tǒng)計圖①和圖②,請根據(jù)圖中提供的信息,解答下列問題:
(1)本次接受隨機抽樣調(diào)查的學生人數(shù)為 人,圖①中的m的值為 ,圖①中“38號”所在的扇形的圓心角度數(shù)為 ;
(2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是 ,中位數(shù)是 ;
(3)根據(jù)樣本數(shù)據(jù),若學校計劃購買200雙運動鞋,建議購買36號運動鞋多少雙?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過C點的直線互相垂直,垂足為D,且AC平分∠DAB.
(1)求證:DC為⊙O的切線;
(2)若⊙O的半徑為3,AD=4,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,DA⊥AB,AD=AB,EA⊥AC,AE=AC.
(1)試說明△ACD≌△AEB;
(2)若∠ACB=90°,連接CE,
①說明EC平分∠ACB;
②判斷DC與EB的位置關系,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將Rt△ABC沿某條直線折疊,使斜邊的兩個端點A與B重合,折痕為DE.
(1)如果AC=6cm,BC=8cm,試求△ACD的周長;
(2)如果∠CAD:∠BAD=1:2,求∠B的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com