【題目】.點P是平面內不與點A,C重合的任意一點.連接AP,將線段AP繞點P逆時針旋轉α得到線段DP,連接ADBD,CP

1)觀察猜想

如圖1,當時,的值是   ,直線BD與直線CP相交所成的較小角的度數(shù)是   

2)類比探究

如圖2,當時,請寫出的值及直線BD與直線CP相交所成的小角的度數(shù),并就圖2的情形說明理由.

3)解決問題

時,若點E,F分別是CACB的中點,點P在直線EF上,請直接寫出點C,PD在同一直線上時的值.

【答案】11,245°3

【解析】

1)如圖1中,延長CPBD的延長線于E,設ABEC于點O.證明,即可解決問題.

2)如圖2中,設BDAC于點O,BDPC于點E.證明,即可解決問題.

3)分兩種情形:①如圖31中,當點D在線段PC上時,延長ADBC的延長線于H.證明即可解決問題.

②如圖32中,當點P在線段CD上時,同法可證:解決問題.

解:(1)如圖1中,延長CPBD的延長線于E,設ABEC于點O

,

,

,

,

,

,線BD與直線CP相交所成的較小角的度數(shù)是,

故答案為1

2)如圖2中,設BDAC于點OBDPC于點E

,

,

,

,

直線BD與直線CP相交所成的小角的度數(shù)為

3)如圖31中,當點D在線段PC上時,延長ADBC的延長線于H

,

,

,

,

,

,

,

,

,

A,D,C,B四點共圓,

,

,設,則,

c

如圖32中,當點P在線段CD上時,同法可證:,設,則,

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,點E,F是對角線BD上的兩點,且BEDF

1)如果四邊形AECF是平行四邊形,求證:四邊形ABCD也是平行四邊形;

2)如果四邊形AECF是菱形,求證:四邊形ABCD也是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點,在軸上任取一點,連接,作的垂直平分線,過點軸的垂線,交于點.設點的坐標為

(Ⅰ)當的坐標取時,點的坐標為________;

(Ⅱ)求滿足的關系式;

(Ⅲ)是否存在點,使得恰為等邊三角形?若存在,求點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

1)甲登山上升的速度是每分鐘   米,乙在A地時距地面的高度b   米;

2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關系式;

3)登山多長時間時,甲、乙兩人距地面的高度差為70米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】由于2020年新型冠狀病毒的襲擊,不得不推遲開學,但停課不停學,各地都開展了網(wǎng)課.某中學為了解學生上網(wǎng)課情況,開學后從全校七年級學生中隨機抽取部分學生進行了數(shù)學科目的測試(把測試結果分為四個等級:A級:優(yōu)秀;B級:良好;C級:合格;D級:不合格),并將測試記錄繪成如下兩幅完全不同的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中的信息解答下列問題:

1)本次抽樣測試的學生數(shù)是多少?

2)求圖1A級扇形的圓心角∠α的度數(shù),并把圖2中的條形統(tǒng)計圖補充完成;

3)該中學七年級共有1200名學生,如果全部參加這次數(shù)學科目測試,請估計不合格的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,平面內互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,如果兩條數(shù)軸不垂直,而是相交成任意的角ω0°<ω180°且ω90°),那么這兩條數(shù)軸構成的是平面斜坐標系,兩條數(shù)軸稱為斜坐標系的坐標軸,公共原點稱為斜坐標系的原點,如圖1,經過平面內一點P作坐標軸的平行線PMPN,分別交x軸和y軸于點MN.點M、Nx軸和y軸上所對應的數(shù)分別叫做P點的x坐標和y坐標,有序實數(shù)對(x,y)稱為點P的斜坐標,記為Px,y

1)如圖2ω45°,矩形OABC中的一邊OAx軸上,BCy軸交于點D,

OA2OC1

A、BC在此斜坐標系內的坐標分別為A  ,B  C  

設點Px,y)在經過OB兩點的直線上,則yx之間滿足的關系為  

設點Qxy)在經過A、D兩點的直線上,則yx之間滿足的關系為  

2)若ω120°,O為坐標原點.

如圖3,圓My軸相切原點O,被x軸截得的弦長OA2,求圓M的半徑及圓心M的斜坐標.

如圖4,圓M的圓心斜坐標為M22),若圓上恰有兩個點到y軸的距離為1,則圓M的半徑r的取值范圍是  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,分別以頂點AB為圓心,大于AB為半徑作弧,兩弧在直線AB兩側分別交于M、N兩點,過M、N作直線MN,與AB交于點O,以O為圓心,OA為半徑作圓,⊙O恰好經過點C.下列結論中,錯誤的是(

A.AB是⊙O的直徑B.ACB90°

C.ABC是⊙O內接三角形D.OABC的內心

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等邊中,點在邊上,以為半徑的于點,過點于點

1)如圖1,求證:的切線;

2)如圖2,連接于點,若中點,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=-x2+bx+c與x軸相交于A(-1,0),B(5,0)兩點.

(1)求拋物線的解析式;

(2)在第二象限內取一點C,作CD垂直x軸于點D,鏈接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個單位,當點C落在拋物線上時,求m的值;

(3)在(2)的條件下,當點C第一次落在拋物線上記為點E,點P是拋物線對稱軸上一點.試探究:在拋物線上是否存在點Q,使以點B、E、P、Q為頂點的四邊形是平行四邊形?若存在,請出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案