【題目】有一條拋物線,三位學生分別說出了它的一些性質:甲說:對稱軸是直線;乙說:與軸的兩個交點的距離為6;丙說:頂點與軸的交點圍成的三角形面積等于9,則這條拋物線解析式的頂點式是______.
【答案】,
【解析】
根據對稱軸是直線x=2,與x軸的兩個交點距離為6,可求出與x軸的兩個交點的坐標為(-1,0),(5,0);再根據頂點與x軸的交點圍成的三角形面積等于9,可得頂點的縱坐標為±3,然后利用頂點式求得拋物線的解析式即可.
解:∵對稱軸是直線x=2,與x軸的兩個交點距離為6,
∴拋物線與x軸的兩個交點的坐標為(-1,0),(5,0),
設頂點坐標為(2,y),
∵頂點與x軸的交點圍成的三角形面積等于9,
∴,
∴y=3或y=-3,
∴頂點坐標為(2,3)或(2,-3),
設函數解析式為y=a(x-2)2+3或y=a(x-2)2-3;
把點(5,0)代入y=a(x-2)2+3得a=-;
把點(5,0)代入y=a(x-2)2-3得a=;
∴滿足上述全部條件的一條拋物線的解析式為y=-(x-2)2+3或y=(x-2)2-3.
故答案為:,.
科目:初中數學 來源: 題型:
【題目】中央電視臺的《朗讀者》節(jié)目激發(fā)了同學們的讀書熱情,為了引導學生“多讀書,讀好書”,某校對八年級部分學生的課外閱讀量進行了隨機調查,整理調查結果發(fā)現,學生課外閱讀的本數量少的有本,最多的有本,并根據調查結果繪制了不完整的圖表,如下所示:
本數(本) | 頻數(人數) | 頻率 |
合計 |
()統(tǒng)計圖表中的__________,__________,__________.
()請將頻數分布直方圖補充完整.
()求所有被調查學生課外閱讀的平均本數.
()若該校八年級共有名學生,請你估計該校八年級學生課外閱讀本及以上的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形ABCD中,E為AB的中點.
(1)將線段AB繞點O逆時針旋轉一定角度,使點A與點B重合,點B與點C重合,用無刻度直尺作出點O的位置,保留作圖痕跡;
(2)將△ABD繞點D逆時針旋轉某個角度,得到△CFD,使DA與DC重合,用無刻度直尺作出△CFD,保留作圖痕跡.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,過原點的拋物線與軸交于另一點,拋物線頂點的坐標為,其對稱軸交軸于點.
(1)求拋物線的解析式;
(2)如圖2,點為拋物線上位于第一象限內且在對稱軸右側的一個動點,求使面積最大時點的坐標;
(3)在對稱軸上是否存在點,使得點關于直線的對稱點滿足以點、、、為頂點的四邊形為菱形.若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與軸交于點,,與軸交于點.
(1)求點,,的坐標;
(2)將繞的中點旋轉,得到.
①求點的坐標;
②判斷的形狀,并說明理由.
(3)在該拋物線對稱軸上是否存在點,使與相似,若存在,請寫出所有滿足條件的點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形中,,點在直線上,與直線相交所得的銳角為60°.點在直線上,,直線,垂足為點且,以為直徑,在的左側作半圓,點是半圓上任一點.
發(fā)現:的最小值為_________,的最大值為__________,與直線的位置關系_________.
思考:矩形保持不動,半圓沿直線向左平移,當點落在邊上時,求半圓與矩形重合部分的周長和面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,點D、E、F分別在BC、AB、CA上,且DE∥CA,DF∥BA,則下列三種說法:
①如果∠BAC=90°,那么四邊形AEDF是矩形
②如果AD平分∠BAC,那么四邊形AEDF是菱形
③如果AD⊥BC且AB=AC,那么四邊形AEDF是菱形
其中正確的有( )
A.3個;B.2個;C.1個;D.0個.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c(a≠0)圖象與x軸交于A,B兩點,與y軸交于C點,且對稱軸為x=1,點B坐標為(﹣1,0).則下面的四個結論:①2a+b=0;②4a﹣2b+c<0;③b2﹣4ac>0;④當y<0時,x<﹣1或x>2.其中正確的有( )
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com