【題目】如圖,點 A 的坐標是(﹣2,0),點 B 的坐標是(0,6),C 為 OB 的中點,將△ABC 繞點 B 逆時針旋轉(zhuǎn) 90°后得到△A′B′C′.若反比例函數(shù) y 的圖象恰好經(jīng)過 A′B 的中點 D,則k _________.
【答案】15
【解析】
作A′H⊥y軸于H.證明△AOB≌△BHA′(AAS),推出OA=BH,OB=A′H,求出點A′坐標,再利用中點坐標公式求出點D坐標即可解決問題.
作A′H⊥y軸于H.
∵∠AOB=∠A′HB=∠ABA′=90°,
∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,
∴∠BAO=∠A′BH,
∵BA=BA′,
∴△AOB≌△BHA′(AAS),
∴OA=BH,OB=A′H,
∵點A的坐標是(2,0),點B的坐標是(0,6),
∴OA=2,OB=6,
∴BH=OA=2,A′H=OB=6,
∴OH=4,
∴A′(6,4),
∵BD=A′D,
∴D(3,5),
∵反比例函數(shù)y=的圖象經(jīng)過點D,
∴k=15.
故答案為:15.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD的頂點A、B在一個半徑為2的圓上,頂點C、D在圓內(nèi),將正方形ABCD沿圓的內(nèi)壁作無滑動的滾動.當滾動一周回到原位置時,點C運動的路徑長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進一批成本為每件 30 元的商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量 y(件)與銷售單價 x(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.
(1)求該商品每天的銷售量 y 與銷售單價 x 之間的函數(shù)關(guān)系式;
(2)若商店按單價不低于成本價,且不高于 50 元銷售,則銷售單價定為多少,才能使銷售該商品每天獲得的利潤 w(元)最大?最大利潤是多少?
(3)若商店要使銷售該商品每天獲得的利潤不低于 800 元,則每天的銷售量最少應(yīng)為多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CD 為⊙O 的直徑,弦 AB 交 CD 于點E,連接 BD、OB.
(1)求證:△AEC∽△DEB;
(2)若 CD⊥AB,AB=6,DE=1,求⊙O 的半徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某交為了開展“陽光體育運動”,計劃購買籃球和足球,已知足球的單價比籃球的單價多元.若購買個籃球和個足球需花費元.
(1)求籃球和足球的單價各是多少元;
(2)若學校購買籃球和足球共個,且購買籃球的總金額不超過購買足球的總金額,則學校最多可購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,直線y1=﹣x與雙曲線y=交于A,B兩點,點C在x軸上,連接AC,BC.當AC⊥BC,S△ABC=15時,求k的值為( 。
A.﹣10B.﹣9C.6D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)和的圖象相交于點,反比例函數(shù)的圖象經(jīng)過點.
(1)求反比例函數(shù)的表達式;
(2)設(shè)一次函數(shù) 的圖象與反比例函數(shù) 的圖象的另一個交點為,連接,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為加強公民節(jié)電意識,某縣將居民用電量分為兩個階梯,月用電量不超過度時按第一個階梯費用收費,超過度時,超出的部分按第二個階梯費用收費下表是該縣居民肖偉家2019年3月和4月所交電費的收據(jù).求該縣居民用電第--階梯電費和第二階梯電費分別為每度多少元?
電費收據(jù)(幸福里小區(qū)電費專用章)
戶名 | 肖偉 |
電表號 | |
月份 | 3月 |
用電量 | 度 |
金額 | 元 |
2019年3月收費員林云
電費收據(jù)(幸福里小區(qū)電費專用章)
戶名 | 肖偉 |
電表號 | |
月份 | 4月 |
用電量 | 度 |
金額 | 元 |
2019年4月收費員林云
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,點E,F分別為邊AD,BC上的一個動點,連接EF,以EF為對稱軸折疊四邊形CDEF,得到四邊形MNFE,點D,C的對應(yīng)點分別為M,N,當點N恰好落在AB的三等分點時,CF的長為___.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com