【題目】某校創(chuàng)建環(huán)保示范學校,為了解全校學生參加環(huán)保類杜團的意愿,在全校隨機抽取了50名學生進行問卷調查,問卷給出了五個社團供學生選擇(學生可根據(jù)自己的愛好選擇一個社團,也可以不選),對選擇了社團的學生的問卷情況進行了統(tǒng)計,如表:

社團名稱

A.酵素制作社團

B.回收材料小制作社團

C.垃圾分類社團

D.環(huán)保義工社團

E.綠植養(yǎng)護社團

人數(shù)

10

15

5

10

5

(1)填空:在統(tǒng)計表中,這5個數(shù)的中位數(shù)是   ;

(2)根據(jù)以上信息,補全扇形圖(圖1)和條形圖(圖2);

(3)該校有1400名學生,根據(jù)調查統(tǒng)計情況,請估計全校有多少學生愿意參加環(huán)保義工社團;

(4)若小詩和小雨兩名同學在酵素制作社團或綠植養(yǎng)護社團中任意選擇一個參加,請用樹狀圖或列表法求出這兩名同學同時選擇綠植養(yǎng)護社團的概率.

【答案】(1)10;(2)補圖見解析;(3)280名;(4)

【解析】(1)根據(jù)中位數(shù)的定義即可判斷;

(2)求出沒有選擇的百分比,高度和E相同,即可畫出圖形;

(3)利用樣本估計總體的思想解決問題即可;

(4)畫出樹狀圖即可解決問題;

1)這5個數(shù)從小到大排列:5,5,10,10,15,故中位數(shù)為10,

故答案為10.

(2)沒有選擇的占1﹣10%﹣30%﹣20%﹣10%﹣20%=10%,

條形圖的高度和E相同;如圖所示:

(3)1400×20%=280(名)

答:估計全校有多少學生愿意參加環(huán)保義工社團有280名;

(4)酵素制作社團、綠植養(yǎng)護社團分別用A、B表示:樹狀圖如圖所示,

共有4種可能,兩人同時選擇綠植養(yǎng)護社團只有一種情形,

∴這兩名同學同時選擇綠植養(yǎng)護社團的概率=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A、B的坐標分別是(0,3)、(-4,0)

(1)將△AOB繞點A逆時針旋轉90°得到△AEF,OB對應點分別是E、F,請在圖中面出△AEF

(2)以點O為位似中心,將三角形AEF作位似變換且縮小為原來的在網(wǎng)格內畫出一個符合條件的

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在等邊△ABC中,DBC的中點,PAB 邊上的一個動點,設AP=x,圖1中線段DP的長為y,若表示yx的函數(shù)關系的圖象如圖2所示,則△ABC的面積為( )

A. 4 B. C. 12 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點C射進房間的地板F處,中午太陽光恰好能從窗戶的最低點D射進房間的地板E處,小明測得窗子距地面的高度OD0.8 m,窗高CD1.2 m,并測得OE0.8 m,OF3 m,求圍墻AB的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題情境)

如圖1,四邊形ABCD是正方形,MBC邊上的一點,ECD邊的中點,AE平分∠DAM

(探究展示)

(1)證明:AM=AD+MC

(2)AM=DE+BM是否成立?若成立,請給出證明;若不成立,請說明理由.

(拓展延伸)

(3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結論是否成立?請分別作出判斷,不需要證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知yx2x3

1)當x為何值時,yx

2)若y2y3x,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩個半徑相等的直角扇形的圓心分別在對方的圓弧上,半徑AE、CF交于點G,半徑BECD交于點H,且點C是弧AB的中點,若扇形的半徑為,則圖中陰影部分的面積等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有紅、黃兩個盒子,紅盒子中藏有三張分別標有數(shù)字,,1的卡片,黃盒子中藏有三張分別標有數(shù)字1,3,2的卡片,卡片外形相同.現(xiàn)甲從紅盒子中取出一張卡片,乙從黃盒子中取出一張卡片,并將它們的數(shù)字分別記為ab

(1)請你用樹形圖或列表法列出所有可能的結果.

(2)現(xiàn)制定這樣一個游戲規(guī)則:若所選出的a,b能使得二次函數(shù)y=ax2+bx+1的圖像與x軸有兩個不同的交點,則稱甲獲勝;否則稱乙獲勝.請問這樣的游戲規(guī)則公平嗎?請你用概率知識解釋.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某縣美化城市工程招投標中,有甲、乙兩個工程隊投標經(jīng)測算:甲隊單獨完成這項工程需要30天,若由甲隊先做10天,剩下的工程由甲、乙合作12天可完成.問:

1)乙隊單獨完成這項工程需要多少天?

2)甲隊施工一天需付工程款35萬元,乙隊施工一天需工程款2萬元,該工程計劃用時不超過35天,在不超過計劃天數(shù)的前提下,由甲隊先單獨施工若干天,剩下的工程由乙隊單獨完成,那么安排甲隊單獨施工多少天工程款最省?最省的工程款是多少萬元?

查看答案和解析>>

同步練習冊答案