【題目】如圖,Rt△ABC中,∠ABC90°,以AB為直徑的⊙OAC于點(diǎn)D,EBC的中點(diǎn),連接DE、OE

(1)判斷DE⊙O的位置關(guān)系并說明理由;

(2)⊙O半徑r=3,DE4,求AD的長.

【答案】(1) DE⊙O相切; (2)3.6

【解析】

1)連接OD,BD;∵AB為直徑,∴,,則BDCRt;又∵EBC的中點(diǎn) DERtBDC斜邊上的中線,所以DE=CE,所以;∵OA=OD,∴;如圖,RtABC中,∠ABC90°,即,所以,∴DE與⊙O相切;

2)由(1)知DE=CE=4,∴;∵EBC的中點(diǎn),∴BC=2CE=8;若⊙O半徑r=3,則AB=2r=6;在tABC中由勾股定理得AC=10;根據(jù)三角形的面積相等得;解得BD=4.8,∴.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是反比例函數(shù)y 在第一象限圖象上一點(diǎn),連接OA,過點(diǎn)AABx軸(點(diǎn)B在點(diǎn)A右側(cè)),連接OB,若OB平分∠AOX,且點(diǎn)B的坐標(biāo)是(8,4),則k的值是( 。

A.6B.8C.12D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠B45°,ABAC,點(diǎn)DBC的中點(diǎn),直角∠MDN繞點(diǎn)D旋轉(zhuǎn),DM,DN分別與邊ABAC交于E,F兩點(diǎn),下列結(jié)論:①△DEF是等腰直角三角形;②AECF;③△BDE≌△ADF;④BECFEF,其中正確結(jié)論是(

A.①②③B.②③④C.①②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)E是矩形ABCD的邊AD上一點(diǎn),BEAD,AE8,現(xiàn)有甲乙二人同時(shí)從E點(diǎn)出發(fā),分別沿ECED方向前進(jìn),甲的速度是乙的倍,甲到達(dá)點(diǎn)目的地C點(diǎn)的同時(shí)乙恰巧到達(dá)終點(diǎn)D處.

1)求tanECD的值

2)求線段ABBC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形OABC的邊OA,OC在坐標(biāo)軸上,矩形CDEF的邊CDCB上,且5CD=3CB,邊CF在軸上,且CF=2OC-3,反比例函數(shù)y= (k>0)的圖象經(jīng)過點(diǎn)B,E,則點(diǎn)E的坐標(biāo)是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(﹣1,0),B(4,0),C(0,2)三點(diǎn),點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,點(diǎn)Px軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)Px軸的垂線l交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M.

(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;

(2)已知點(diǎn)F(0,),當(dāng)點(diǎn)Px軸上運(yùn)動(dòng)時(shí),試求m為何值時(shí),四邊形DMQF是平行四邊形?

(3)點(diǎn)P在線段AB運(yùn)動(dòng)過程中,是否存在點(diǎn)Q,使得以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為貧困山區(qū)捐款,學(xué)校團(tuán)總支為了了解本校學(xué)生的捐款情況,隨機(jī)抽取了50名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計(jì),并繪制成統(tǒng)計(jì)圖.

50名同學(xué)捐款的眾數(shù)為______元,中位數(shù)為______元;

求這50名同學(xué)捐款的平均數(shù)_______元;

該校共有1200名學(xué)生參與捐款,請估計(jì)該校學(xué)生的捐款總錢數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸交于點(diǎn),兩點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),與軸交于點(diǎn),點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),過軸,垂足為,交直線于點(diǎn)

1)直接寫出,,三點(diǎn)的坐標(biāo);

2)若以,,為頂點(diǎn)的四邊形是平行四邊形,求此時(shí)點(diǎn)的坐標(biāo);

3)當(dāng)點(diǎn)位于直線下方的拋物線上時(shí),過點(diǎn)于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,的面積為,求的函數(shù)關(guān)系式,并求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C的中點(diǎn),連接AC并延長至點(diǎn)D,使CDAC,點(diǎn)EOB上一點(diǎn),且,CE的延長線交DB的延長線于點(diǎn)FAF交⊙O于點(diǎn)H,連接BH

1)求證:BD是⊙O的切線;(2)當(dāng)OB2時(shí),求BH的長.

查看答案和解析>>

同步練習(xí)冊答案