m為任意實數(shù),下列不等式中一定成立的是


  1. A.
    數(shù)學(xué)公式m
  2. B.
    m-2<m+2
  3. C.
    m>-m
  4. D.
    5m>3m
B
分析:數(shù)可以是任意數(shù),代入后看所給等式是否成立.
解答:A、C、D、當(dāng)m=0時,不成立,故錯誤;
B、一個數(shù)減去一個正數(shù),一定小于加上一個正數(shù),正確;
C、D都不知道m(xù)的正負.
故選B.
點評:代入特殊值進行比較可簡化運算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

4、a為任意實數(shù),則下列四組數(shù)字都不可能是a2的末位數(shù)字的應(yīng)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知x=2
a
+1,y=4-
a
,則下列說法正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先自學(xué)下列材料,再解題.在不等式的研究中,有以下兩個重要基本不等式:
若a≥0,b≥0,則
a+b
2
ab
 …①
若a≥0,b≥0,c≥0,則
a+b+c
3
3abc
…②
不等式①、②反映了兩個(或三個)非負數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù).這兩個基本不等式在不等式證明中有著廣泛的應(yīng)用.現(xiàn)舉例如下:
若ab>0,試證明不等式:
(a+b)2+2ab
3
3(a+b)2a2b2

證明:∵ab>0
(a+b)2+2ab
3
=
(a+b)2+ab+ab
3
3(a+b)2•ab•ab

(a+b)2+2ab
3
3(a+b)2a2b2

現(xiàn)請你利用上述不等式①、②證明下列不等式:
(1)當(dāng)ab≥0時,試證明:
a2+b2+10ab
12
3
(a+b)2a2b2
4

(2)當(dāng)a、b為任意實數(shù)時,試證明:
a2+b2+ab
3
3
(a+b)2a2b2
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列句子中,不是命題的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省寧波市寧海中學(xué)自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

先自學(xué)下列材料,再解題.在不等式的研究中,有以下兩個重要基本不等式:
若a≥0,b≥0,則 …①
若a≥0,b≥0,c≥0,則…②
不等式①、②反映了兩個(或三個)非負數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù).這兩個基本不等式在不等式證明中有著廣泛的應(yīng)用.現(xiàn)舉例如下:
若ab>0,試證明不等式:
證明:∵ab>0


現(xiàn)請你利用上述不等式①、②證明下列不等式:
(1)當(dāng)ab≥0時,試證明:
(2)當(dāng)a、b為任意實數(shù)時,試證明:

查看答案和解析>>

同步練習(xí)冊答案