【題目】如圖,已知1=2,要得到ABD≌△ACE,從下列條件中補選一個,則錯誤的是( )

A.AB=AC B.DB=EC C.ADB=AEC D.B=C

【答案】C

【解析】

試題分析:首先根據(jù)條件1=2可得AD=AE,ADB=AEC,然后再結(jié)合所給選項和全等三角形的判定定理進行分析即可.

解:∵∠1=2

AD=AE,ADB=AEC,

A、添加AB=AC可得B=C,可利用AAS判定ABD≌△ACE,故此選項不合題意;

B、添加BD=EC可利用SAS判定ABD≌△ACE,故此選項不合題意;

C、添加ADB=AEC,不能判定ABD≌△ACE,故此選項符合題意;

D、添加B=C可利用AAS判定ABD≌△ACE,故此選項不合題意;

故選:C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:在平面直角坐標系中,點A、B的坐標分別是(a,0),(b,0)且+|b-2|=0.
(1)求a、b的值;
(2)在y軸上是否存在點C,使三角形ABC的面積是12?若存在,求出點C的坐標;若不存在,請說明理由.
(3)已知點P是y軸正半軸上一點,且到x軸的距離為3,若點P沿平行于x軸的負半軸方向以每秒1個單位長度平移至點Q,當運動時間t為多少秒時,四邊形ABPQ的面積S為15個平方單位?寫出此時點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板按如圖方式擺放,兩個直角頂點重合,∠A=60°,E=B=45°

1)求證:∠ACE=BCD;

2)猜想∠ACB與∠ECD數(shù)量關(guān)系并說明理由;

3)按住三角板ACD不動,繞點C旋轉(zhuǎn)三角板ECB,探究當∠ACB等于多少度時,ADCB.請在備用圖中畫出示意圖并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將圖①中的正方形剪開得到圖②,圖②中共有4個正方形;將圖②中一個正方形剪開得到圖③,圖③中共有7個正方形;將圖③中一個正方形剪開得到圖④,圖④中共有10個正方形…,如此下去,則第2014個圖中共有正方形的個數(shù)為( )

A. 2014. B. 2017 C. 6040 D. 6044

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程(x+3)(x4)=0的兩個根為( 。

A. x1=﹣2x26B. x1=﹣6,x22C. x1=﹣3,x24D. x1=﹣4x23

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖①是小明在健身器材上進行仰臥起坐鍛煉時的情景,圖②是小明鍛煉時上半身由ON位置運動到與地面垂直的OM位置時的示意圖.已知AC=0.66米,BD=0.26米,α=20°.(參考數(shù)據(jù):sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)

(1)求AB的長(精確到0.01米);

(2)若測得ON=0.8米,試計算小明頭頂由N點運動到M點的路徑的長度.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列一元一次不等式解應用題的關(guān)鍵就是找出題中的,并將它轉(zhuǎn)化為.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使△AMN周長最小時,則∠AMN+∠ANM的度數(shù)為( )

A. 135° B. 130° C. 125°

D. 120°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡:[(a+2b)(a2b)(a+4b)2]÷(4b)

查看答案和解析>>

同步練習冊答案