【題目】解方程
(1)
(2)x2-2x-4=0
(3)
(4)(x+3)(x-1)=12
【答案】(1)x1=0,x2=;(2)x1=+1,x2= -+1;(3)x1=1,x2= -1;(4) x1= -5,x2=3
【解析】
(1)先分解因式,即可得出兩個(gè)一元一次方程,求出方程的解即可;
(2)用公式法解方程即可;
(3)兩邊開方,即可得出兩個(gè)一元一次方程,求出方程的解即可;
(4)整理后分解因式,即可得出兩個(gè)一元一次方程,求出方程的解即可.
解:(1)5x2+3x=0,
∴x(5x+3)=0,
∴x=0或5x+3=0,
解得:x1=0,x2=;
(2)x22x4=0,
∵a=1,b=-2,c=-4,
∴△=b24ac=4+16=20>0,
∴x=,
解得:x1=,x2=;
(3)(3x2)2=(2x3)2,
開方得:3x2=±(2x3),
解得:x1=1,x2=1;
(4)(x+3)(x1)=12,
整理得:x2+2x15=0,
∴(x+5)(x3)=0,
∴x+5=0或x3=0,
解得:x1=5,x2=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知m,n是實(shí)數(shù),定義運(yùn)算“*”為:m*n=mn+n.
(1)分別求4*(﹣2)與4*的值;
(2)若關(guān)于x的方程x*(a*x)=﹣有兩個(gè)相等的實(shí)數(shù)根,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中CE⊥AB于E,BF⊥AC于F.
(1)求證:△AFB∽△AEC;
(2)求證:△AEFA∽△ABC;
(3)若∠A=60°時(shí),求△AFE與△ABC面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,M為直線l:x=a上一點(diǎn),N是直線l外一點(diǎn),且直線MN與x軸不平行,若MN為某個(gè)矩形的對(duì)角線,且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為直線l的“伴隨矩形”.如圖為直線l的“伴隨矩形”的示意圖.
(1)已知點(diǎn)A在直線l:x=2上,點(diǎn)B的坐標(biāo)為(3,﹣2)
①若點(diǎn)A的縱坐標(biāo)為0,則以AB為對(duì)角線的直線l的“伴隨矩形”的面積是 ;
②若以AB為對(duì)角線的直線l的“伴隨矩形”是正方形,求直線AB的表達(dá);
(2)點(diǎn)P在直線l:x=m上,且點(diǎn)P的縱坐標(biāo)為4,若在以點(diǎn)(2,1),(﹣2,1),(﹣2,﹣1),(2,﹣1)為頂點(diǎn)的四邊形上存在一點(diǎn)Q,使得以PQ為對(duì)角線的直線l的“伴隨矩形”為正方形,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑PD=8,點(diǎn)E是⊙O上一點(diǎn),點(diǎn)A是的中點(diǎn),連接PA,過點(diǎn)A作直線l⊥PE,垂足為點(diǎn)B,PB=6,直徑PD的延長線交直線l于點(diǎn)F.
(1)求證:直線l是⊙O的切線;
(2)求線段PA的長;
(3)求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識(shí),求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過坐標(biāo)原點(diǎn)O,與x軸交于另一點(diǎn)A,頂點(diǎn)為B.求:
(1)拋物線的解析式;
(2)△AOB的面積;
(3)要使二次函數(shù)的圖象過點(diǎn)(10,0),應(yīng)把圖象沿x軸向右平移 個(gè)單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB中,∠ABO=90°,點(diǎn)A位于第一象限,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)B在x軸正半軸上,若雙曲線y=(x>0)與△OAB的邊AO、AB分別交于點(diǎn)C、D,點(diǎn)C為AO的中點(diǎn),連接OD、CD.若S△OBD=3,則S△OCD為( 。
A.3B.4C.D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,以AC為直徑的⊙O交AB于點(diǎn)D,點(diǎn)E為弧AD的中點(diǎn),連接CE交AB于點(diǎn)F,且BF=BC.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為2,=,求CE的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com