【題目】我們把順次連接四邊形各邊中點(diǎn)所得的四邊形叫做中點(diǎn)四邊形.若一個任意四邊形的面積為a,則它的中點(diǎn)四邊形面積為( )
A.aB. C.D.
【答案】A
【解析】
由E為AB中點(diǎn),且EF平行于AC,EH平行于BD,得到△BEK與△ABM相似,△AEN與△ABM相似,利用面積之比等于相似比的平方,得到△EBK面積與△ABM面積之比為1:4,且△AEN與△EBK面積相等,進(jìn)而確定出四邊形EKMN面積為△ABM的一半,同理得到四邊形KFPM面積為△BCM面積的一半,四邊形QGPM面積為△DCM面積的一半,四邊形HQMN面積為△DAM面積的一半,四個四邊形面積之和即為四個三角形面積之和的一半,即為四邊形ABCD面積的一半,即可得出答案.
解:如圖,畫任意四邊形ABCD,設(shè)AC與EH,FG分別交于點(diǎn)N,P,BD與EF,HG分別交于點(diǎn)K,Q,則四邊形EFGH即為它的中點(diǎn)四邊形,
∵E是AB的中點(diǎn),EF//AC,EH//BD,
∴△EBK∽△ABM,△AEN∽△ABM,
∴=,S△AEN=S△EBK,
∴=,
同理可得:=,=,=,
∴=,
∵四邊形ABCD的面積為a,
∴四邊形EFGH的面積為,
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三點(diǎn)在數(shù)軸上,點(diǎn)表示的數(shù)是,從點(diǎn)出發(fā)向右平移7個單位長度得到點(diǎn)。
(1)求出點(diǎn)表示的數(shù),畫一條數(shù)軸并在數(shù)軸上標(biāo)出點(diǎn)和點(diǎn);
(2)若此數(shù)軸在一張紙上,將紙沿某一條直線對折,此時點(diǎn)與表示數(shù)的點(diǎn)剛好重合,折痕與數(shù)軸有一個交點(diǎn),求點(diǎn)表示的數(shù)的相反數(shù)(原卷無此問);
(3)在數(shù)軸上有一點(diǎn),點(diǎn)到點(diǎn)和點(diǎn)的距離之和為11,求點(diǎn)所表示的數(shù);
(4)從初始位置分別以1單位長度和2單位長度的速度同時向左運(yùn)動,是否存在的值,使秒后點(diǎn)到的距離與點(diǎn)到原點(diǎn)距離相等?若存在請求出的值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D是邊AB上一點(diǎn),且∠A=2∠DCB.E是BC邊上的一點(diǎn),以EC為直徑的⊙O經(jīng)過點(diǎn)D.
(1)求證:AB是⊙O的切線;
(2)若CD的弦心距為1,BE=EO,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙與菱形在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)在軸上,且點(diǎn)在點(diǎn)的右側(cè).
()求菱形的周長.
()若⊙沿軸向右以每秒個單位長度的速度平移,菱形沿軸向左以每秒個單位長度的速度平移,設(shè)菱形移動的時間為(秒),當(dāng)⊙與相切,且切點(diǎn)為的中點(diǎn)時,連接,求的值及的度數(shù).
()在()的條件下,當(dāng)點(diǎn)與所在的直線的距離為時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是等腰△ABC底邊BC上的高.點(diǎn)O是AC中點(diǎn),延長DO到E,使OE=OD,連接AE,CE.
(1)求證:四邊形ADCE的是矩形;
(2)若AB=17,BC=16,求四邊形ADCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣+bx+4與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,若已知A點(diǎn)的坐標(biāo)為(﹣2,0).
(1)求拋物線的解析式;
(2)連接AC、BC,求線段BC所在直線的解析式;
(3)在拋物線的對稱軸上是否存在點(diǎn)P,使△ACP為等腰三角形?若存在,求出符合條件的P點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一組對角是直角的四邊形叫做“準(zhǔn)矩形”;有兩組鄰邊(不重復(fù))相等的四邊形叫做“準(zhǔn)菱形”.如圖①,在四邊形ABCD中,若∠A=∠C=90°,則四邊形ABCD是“準(zhǔn)矩形”;如圖②,在四邊形ABCD中,若AB=AD,BC=DC,則四邊形ABCD是“準(zhǔn)菱形”.
(1)如圖,在邊長為1的正方形網(wǎng)格中,A、B、C在格點(diǎn)(小正方形的頂點(diǎn))上,請分別在圖③、圖④中畫出“準(zhǔn)矩形”ABCD和“準(zhǔn)菱形”ABCD′.(要求:D、D′在格點(diǎn)上);
(2)下列說法正確的有 ;(填寫所有正確結(jié)論的序號)
①一組對邊平行的“準(zhǔn)矩形”是矩形;②一組對邊相等的“準(zhǔn)矩形”是矩形;
③一組對邊相等的“準(zhǔn)菱形”是菱形;④一組對邊平行的“準(zhǔn)菱形”是菱形.
(3)如圖⑤,在△ABC中,∠ABC=90°,以AC為一邊向外作“準(zhǔn)菱形”ACEF,且AC=EC,AF=EF,AE、CF交于點(diǎn)D.
①若∠ACE=∠AFE,求證:“準(zhǔn)菱形”ACEF是菱形;
②在①的條件下,連接BD,若BD=,∠ACB=15°,∠ACD=30°,請直接寫出四邊形ACEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高中學(xué)生身體素質(zhì),學(xué)校開設(shè)了A:籃球、B:足球、C:跳繩、D:羽毛球四種體育活動,為了解學(xué)生對這四種體育活動的喜歡情況,在全校隨機(jī)抽取若干名學(xué)生進(jìn)行問卷調(diào)查(每個被調(diào)查的對象必須選擇而且只能在四種體育活動中選擇一種),將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計(jì)圖(未畫完整).
(1)這次調(diào)查中,一共調(diào)查了________名學(xué)生;
(2)請補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)若有3名喜歡跳繩的學(xué)生,1名喜歡足球的學(xué)生組隊(duì)外出參加一次聯(lián)誼活動,欲從中選出2人擔(dān)任組長(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學(xué)生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com