【題目】定義:有一組對角是直角的四邊形叫做“準矩形”;有兩組鄰邊(不重復)相等的四邊形叫做“準菱形”.如圖①,在四邊形ABCD中,若∠A=∠C=90°,則四邊形ABCD是“準矩形”;如圖②,在四邊形ABCD中,若AB=AD,BC=DC,則四邊形ABCD是“準菱形”.
(1)如圖,在邊長為1的正方形網(wǎng)格中,A、B、C在格點(小正方形的頂點)上,請分別在圖③、圖④中畫出“準矩形”ABCD和“準菱形”ABCD′.(要求:D、D′在格點上);
(2)下列說法正確的有 ;(填寫所有正確結論的序號)
①一組對邊平行的“準矩形”是矩形;②一組對邊相等的“準矩形”是矩形;
③一組對邊相等的“準菱形”是菱形;④一組對邊平行的“準菱形”是菱形.
(3)如圖⑤,在△ABC中,∠ABC=90°,以AC為一邊向外作“準菱形”ACEF,且AC=EC,AF=EF,AE、CF交于點D.
①若∠ACE=∠AFE,求證:“準菱形”ACEF是菱形;
②在①的條件下,連接BD,若BD=,∠ACB=15°,∠ACD=30°,請直接寫出四邊形ACEF的面積.
【答案】(1)見解析;(2)①②③④;(3)①證明見解析;②
【解析】
(1)根據(jù)準矩形和準菱形的特點畫圖即可;
(2)根據(jù)矩形的判定定理和菱形的判定定理結合準矩形和準菱形的性質(zhì)對每一個選項進行推斷即可;
(3)①先根據(jù)已知得出△ACF≌△ECF,再結合∠ACE=∠AFE可推出AC∥EF,AF∥CE,則證明了準菱形ACEF是平行四邊形,又因為AC=EC即可得出準菱形ACEF是菱形;
②取AC的中點M,連接BM、DM,根據(jù)四邊形ACEF是菱形可得A、B、C、D四點共圓,點M是圓心,根據(jù)圓周角定理可推出∠BMD=90°,即可求出AC,再根據(jù)∠ACD=30°即可求出AD,CD的長,則可求出菱形的面積.
(1);
(2)①因為∠A=∠C=90°,結合一組對邊平行可以判斷四邊形為矩形,故①正確;
②因為∠A=∠C=90°,結合一組對邊相等可以判斷四邊形為矩形,故②正確;
③因為AB=AD,BC=DC,結合一組對邊相等可以判斷四邊形為菱形,故③正確;
④因為AB=AD,BC=DC,結合一組對邊平行可以判斷四邊形為菱形,故④正確;
故答案為:①②③④;
(3)①證明:∵AC=EC,AF=EF,CF=CF,
∴△ACF≌△ECF(SSS).
∴∠ACF=∠ECF,∠AFC=∠EFC,
∵∠ACE=∠AFE,
∴∠ACF=∠EFC,∠ECF=∠AFC,
∴AC∥EF,AF∥CE,
∴準菱形ACEF是平行四邊形,
∵AC=EC,
∴準菱形ACEF是菱形;
②如圖:取AC的中點M,連接BM、DM,
∵四邊形ACEF是菱形,
∴AE⊥CF,∠ADC=90°,
又∵∠ABC=90°,
∴A、B、C、D四點共圓,點M是圓心,
∵∠ACB=15°,
∴∠AMB=30°,
∵∠ACD=30°,
∴∠AMD=60°,
∴∠BMD=90°,
∴△BMD是等腰直角三角形,
∴BM=DM=BD=×=1,
∴AC=2(直角三角形斜邊上的中線等于斜邊的一半),
∴AD=AC×sin30°=1,CD=AC×cos30°=,
∴菱形ACEF的面積=×1××4=.
科目:初中數(shù)學 來源: 題型:
【題目】我們把順次連接四邊形各邊中點所得的四邊形叫做中點四邊形.若一個任意四邊形的面積為a,則它的中點四邊形面積為( )
A.aB. C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,在的右倒,平分,平分,,所在直線交于點,.
(1)求的度數(shù).
(2)若,求的度數(shù)(用含的代數(shù)式表示).
(3)將線段沿方向平移,使得點在點的右側(cè),其他條件不變,在圖中畫出平移后的圖形,并判斷的度數(shù)是否發(fā)生改變?若改變,求出它的度數(shù)(用含的式子表示);若不改變,請說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直線交菱形ABCD的邊于M、N兩點.設AC=2,BD=1,AP=x,△CMN的面積為y,則y關于x的函數(shù)圖象大致形狀是( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知函數(shù)y=(x>0)的圖象經(jīng)過點A、B,點B的坐標為(2,2).過點A作AC⊥x軸,垂足為C,過點B作BD⊥y軸,垂足為D,AC與BD交于點F.一次函數(shù)y=ax+b的圖象經(jīng)過點A、D,與x軸的負半軸交于點E
(1)若AC=OD,求a、b的值;
(2)若BC∥AE,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,點A、B、C三點的坐標分別為(-2,3)(-3,1)(-5,2),將△ABC先右平移3個單位,再向下平移1個單位得到△DEF.
(1)畫出△DEF,并寫出點D,E,F的坐標;
(2)求△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在△ABC中,且∠BAC=70°,AD是△ABC的角平分線,點E是AC邊上的一點,點F為直線AB上的一動點,連結EF,直線EF與直線AD交于點P,設∠AEF=α°
(1)如圖①,若 DE//AB,則①∠ADE的度數(shù)是_______;
②當∠DPE=∠DEP時,∠AEF= _____度:當∠PDE=∠PED,∠AEF=_______度;
(2)如圖②,若DE⊥AC,則是否存在這樣的α的值,使得△DPE中有兩個相等的角?若存在求出α的值;若不存在,說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩塊等腰直角三角形紙片AOB和COD按圖1所示放置,直角頂點重合在點O處,AB=25,CD=17.保持紙片AOB不動,將紙片COD繞點O逆時針旋轉(zhuǎn)α(0°<α<90°)角度,如圖2所示.
(1)利用圖2證明AC=BD且AC⊥BD;
(2)當BD與CD在同一直線上(如圖3)時,求AC的長和α的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com