【題目】如圖,在平面直角坐標系中,直線與拋物線交于A、B兩點,點A在x軸上,點B的橫坐標為-8.
(1)求該拋物線的解析式;
(2)點P是直線AB上方的拋物線上一動點(不與點A、B重合),過點P作x軸的垂線,垂足為C,交直線AB于點D,作PE⊥AB于點E.
①設(shè)△PDE的周長為l,點P的橫坐標為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;
②連接PA,以PA為邊作圖示一側(cè)的正方形APFG.隨著點P的運動,正方形的大小、位置也隨之改變.當頂點F或G恰好落在y軸上時,直接寫出對應(yīng)的點P的坐標.
【答案】(1)(2)①
②滿足題意的點P有三個,分別是
【解析】
(1)利用直線解析式求出點A、B的坐標,再利用待定系數(shù)法求二次函數(shù)解析式解答;
(2)①利用直線解析式和拋物線解析式表示出PD,再利用同角的余角相等求出∠DPE=∠BAO,根據(jù)直線k值求出∠BAO的正弦和余弦值,然后表示出PE、DE,再根據(jù)三角形的周長公式列式整理即可得解,再根據(jù)二次函數(shù)的最值問題解答;
②分(i)點G在y軸上時,過點P作PH⊥x軸于H,根據(jù)正方形的性質(zhì)可得AP=AG,∠PAG=90°,再求出∠PAH=∠AGO,然后利用“角角邊”證明△APH和△GAO全等,根據(jù)全等三角形對應(yīng)邊相等可得PH=AO=2,然后利用二次函數(shù)解析式求解即可;(ii)點F在y軸上時,過點PM⊥x軸于M,作PN⊥y軸于N,根據(jù)正方形的性質(zhì)可得AP=FP,∠APF=90°,再根據(jù)同角的余角相等求出∠APM=∠FPN,然后利用“角邊角”證明△APM和△FPN全等,根據(jù)全等三角形對應(yīng)邊相等可得PM=PN,從而得到點P的橫坐標與縱坐標相等,再根據(jù)二次函數(shù)的解析式求解即可.
解:(1)令,則,解得,當時,,∴點A(2,0),B(﹣8,),把點A、B代入拋物線得,,解得:,所以,該拋物線的解析式;
(2)①∵點P在拋物線上,點D在直線上,∴PD=,∵PE⊥AB,∴∠DPE+∠PDE=90°,又∵PD⊥x軸,∴∠BAO+∠PDE=90°,∴∠DPE=∠BAO,∵直線解析式,∴sin∠BAO=,cos∠BAO=,∴PE=PDcos∠DPE=PD,DE=PDsin∠DPE=PD,∴△PDE的周長為l=PD+PD+PD=PD==,即;∵,∴當x=﹣3時,最大值為15;
②∵點A(2,0),∴AO=2,
分(i)點G在y軸上時,過點P作PH⊥x軸于H,在正方形APFG中,AP=AG,∠PAG=90°,∵∠PAH+∠OAG=90°,∠AGO+∠OAG=90°,∴∠PAH=∠AGO,在△APH和△GAO中,∵∠PAH=∠AGO,∠AHP=∠GOA=90°,AP=AG,∴△APH≌△GAO(AAS),∴PH=AO=2,∴點P的縱坐標為2,∴,整理得,,解得,∴點P(,2)或P(,2);
(ii)點F在y軸上時,過點PM⊥x軸于M,作PN⊥y軸于N,在正方形APFG中,AP=FP,∠APF=90°,∵∠APM+∠MPF=90°,∠FPN+∠MPF=90°,∴∠APM=∠FPN,在△APM和△FPN中,∵∠APM=∠FPN,∠AMP=∠FNP=90°,AP=AF,∴△APM≌△FPN(AAS),∴PM=PN,∴點P的橫坐標與縱坐標相等,∴,整理得,,解得,(舍去),∴點P(,).
綜上所述,存在點P(,2)或P(,2)或P(,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=﹣bx,其中a、b、c,滿足a>b>c,a+b+c=0.
(1)求證:這兩個函數(shù)的圖象交于不同的兩點;
(2)設(shè)這兩個函數(shù)的圖象交于A,B兩點,作AA1⊥x軸于A1,BB1⊥x軸于B1,求線段A1B1的長的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,將矩形ABCD繞點C按順時針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',B'C與AD交于點E,AD的延長線與A'D'交于點F.
(1)如圖①,當α=60°時,連接DD',求DD'和A'F的長;
(2)如圖②,當矩形A'B'CD'的頂點A'落在CD的延長線上時,求EF的長;
(3)如圖③,當AE=EF時,連接AC,CF,求ACCF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(1,﹣4)、B(3,﹣3)、C(1,﹣1)(每個小方格都是邊長為一個單位長度的正方形).
(1)請畫出△ABC關(guān)于原點對稱的△A1B1C1,并寫出A1,B1,C1的坐標;
(2)請畫出△ABC繞點B逆時針旋轉(zhuǎn)90°后的△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針旋轉(zhuǎn)60°到△的位置,連接,則的長為( )
A.2B.C.D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:各類方程的解法
求解一元二次方程,把它轉(zhuǎn)化為兩個一元一次方程來解,求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗,各類方程的解法不盡相同,但是它們有一個共同的基本數(shù)學(xué)思想“轉(zhuǎn)化”,把未知轉(zhuǎn)化為已知.
用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.
例如:解方程
解:移項,得
兩邊平方,得
即
兩邊再平方,得
即
解這個方程得:
檢驗:當時,原方程左邊,右邊
不是原方程的根;
當時,原方程左邊,右邊
原方程的根
原方程的根是.
(1)請仿照上述解法,求出方程的解;
(2)如圖已知矩形草坪的長,寬,小華把一根長為的繩子的一端固定在點,從草坪邊沿走到點處,把長繩段拉直并固定在點,然后沿草坪邊沿走到點處,把長繩剩下的一段拉直,長繩的另一端恰好落在點,則 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形網(wǎng)格中建立平面直角坐標系,已知△ABC三個頂點分別為A(﹣1,2)、B(2,1)、C(4,5).
(1)以原點O為位似中心,在x軸的上方畫出△A1B1C1,使△A1B1C1與△ABC位似,且相似比為2;
(2)△A1B1C1的面積是 平方單位.
(3)點P(a,b)為△ABC內(nèi)一點,則在△A1B1C1內(nèi)的對應(yīng)點P’的坐標為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,丁軒同學(xué)在晚上由路燈AC走向路燈BD,當他走到點P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當他向前再步行20m到達Q點時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學(xué)的身高是1.5m,兩個路燈的高度都是9m,則兩路燈之間的距離是_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+4x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個交點,求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過點A(6,0),與y軸交于點B,點p是二次函數(shù)對稱軸上的一個動點,當PB+PA的值最小時,求p的坐標
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com