【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針旋轉(zhuǎn)60°到△的位置,連接,則的長為( )
A.2B.C.D.1
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A1,A2,A3是拋物線y=x2+1(x>0)上的三點,且A1,A2,A3三點的橫坐標(biāo)為連續(xù)的整數(shù),連接A1A3,過A2作A2Q⊥x軸于點Q,交A1A3于點P,則線段PA2的長為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明隨機調(diào)查了若干市民租用共享單車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根據(jù)圖中信息,解答下列問題:
(1)這項被調(diào)查的總?cè)藬?shù)是多少人?
(2)試求表示A組的扇形統(tǒng)計圖的圓心角的度數(shù),補全條形統(tǒng)計圖;
(3)如果小明想從D組的甲、乙、丙、丁四人中隨機選擇兩人了解平時租用共享單車情況,請用列表或畫樹狀圖的方法求出恰好選中甲的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一塊等邊三角形的廢鐵片,其中AB=AC=10,BC=12.利用其剪裁一個正方形DEFG,使正方形的一條邊DE落在BC上,頂點F. G分別落在AC、AB上.
(1)小聰想:要畫出正方形DEFG,只要能計算出正方形的邊長就能求出BD和CE的長,從而確定D點和E點,再畫正方形DEFG就容易了.請你幫小聰求出正方形的邊長.
(2)小明想:不求正方形的邊長也能畫出正方形.具體作法是:
①在AB邊上任取一點G′,如圖2作正方形G′D′E′F′;
②連接BF′并延長交AC于點F;
③過點F作FE∥F′E′交BC于點E,FG∥F′G′交AB于點G,GD∥G′D′交BC于點D,則四邊形DEFG即為所求的正方形.你認為小明的作法正確嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB為10cm,弦AC為6cm,
(1)用尺規(guī)作圖畫出∠ACB的平分線交⊙O于點D.(不要寫作法,保留作圖痕跡)
(2)分別連接點AD和BD,求弦BC、AD、BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與拋物線交于A、B兩點,點A在x軸上,點B的橫坐標(biāo)為-8.
(1)求該拋物線的解析式;
(2)點P是直線AB上方的拋物線上一動點(不與點A、B重合),過點P作x軸的垂線,垂足為C,交直線AB于點D,作PE⊥AB于點E.
①設(shè)△PDE的周長為l,點P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;
②連接PA,以PA為邊作圖示一側(cè)的正方形APFG.隨著點P的運動,正方形的大小、位置也隨之改變.當(dāng)頂點F或G恰好落在y軸上時,直接寫出對應(yīng)的點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)公,作為運城乃至山西的一張名片,吸引了來自世界各地的游客,在運城西南公里的常平村(關(guān)公故鄉(xiāng))南山上,有一尊巨型關(guān)公銅像,高米,象征關(guān)公享年歲,底座的高度也有一定寓意.有一位游客,對此產(chǎn)生了興趣,想測量它的高度,由于游客無法直接到達銅像底部,因此該游客計劃借助坡面高度來測量它的高度.如圖,代表底座的高,坡頂與底座底部處在同一水平面上,該游客在斜坡底處測得該底座頂端的仰角為,然后他沿著坡度為的斜坡攀行了米,在坡頂處又測得該底座頂端的仰角為.求:
坡頂到地面的距離;
求底座的高度(結(jié)果精確到米).
(參考數(shù)據(jù):,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點的坐標(biāo)分別為A(2,2),B(1,0),C(3,1)
(1)畫出△ABC關(guān)于x軸對稱的;
(2)畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°的△A2B1C2,寫出點C2的坐標(biāo);
(3)在(1)(2)的基礎(chǔ)上,圖中的,關(guān)于哪個點中心對稱.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=3,AC=4,點D是BC的中點,將△ABD沿AD翻折得到△AED,連CE
(1)求證:AD=ED
(2)連接BE,猜想△BEC的形狀,并說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com