【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(-1,0),(3,0),現同時將點A,B分別向上平移2個單位長度,再向右平移1個單位長度,分別得到點A,B的對應點C,D.連接AC,BD.
(1)寫出點C,D的坐標及四邊形ABDC的面積.
(2)在y軸上是否存在一點P,連接PA,PB,使S三角形PAB=S四邊形ABDC?若存在,求出點P的坐標,若不存在,試說明理由;
(3)點Q是線段BD上的動點,連接QC,QO,當點Q在BD上移動時(不與B,D重合),給出下列結論:①的值不變;②的值不變,其中有且只有一個正確,請你找出這個結論并求值.
【答案】(1)C(0,2),D(4,2),S四邊形ABCD=8;(2)存在,點P的坐標為(0,4)或(0,-4);(3)結論①正確,=1.
【解析】
(1)根據點平移的規(guī)律:左減右加,上加下減,即可得到點C、D的坐標,利用平行四邊形的面積公式計算面積即可;
(2)設點P的坐標為(0,y),根據三角形的面積公式底乘以高的一半列式計算即可得到答案;
(3)結論①正確.過點Q作QE∥AB,交CO于點E,利用平行線的性質:兩直線平行內錯角相等證得∠DCQ+∠BOQ=∠CQO,由此得到結論①正確
(1)∵將點A,B分別向上平移2個單位長度,再向右平移1個單位長度,
∴C(0,2),D(4,2),AB∥CD且AB=CD=4,
∴四邊形ABDC是平行四邊形,
∴S四邊形ABCD=4×2=8.
(2)存在,
設點P的坐標為(0,y),根據題意,得×4×|y|=8.
解得y=4或y=-4.
∴點P的坐標為(0,4)或(0,-4).
(3)結論①正確.
過點Q作QE∥AB,交CO于點E.
∵AB∥CD,
∴QE∥CD.
∴∠DCQ=∠EQC,∠BOQ=∠EQO.
∵∠EQC+∠EQO=∠CQO,
∴∠DCQ+∠BOQ=∠CQO.
∴=1.
科目:初中數學 來源: 題型:
【題目】如圖是某種產品展開圖,高為3cm.
(1)求這個產品的體積.
(2)請為廠家設計一種包裝紙箱,使每箱能裝5件這種產品,要求沒有空隙且要使該紙箱所用材料盡可能少(紙的厚度不計,紙箱的表面積盡可能。蟠碎L方體的表面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數量不少于乙種商品數量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,小正方形方格的邊長為 1,
按要求作圖,并根據要求解答問題:
(1)作圖:連接圖中小正方形方格的某兩個頂點,分別得到三條線段、、,使得、、;
(2)判斷(1)中的三條線段、、能否構成三角形,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小巷左石兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離BC為0.7米,梯子頂端到地面的距離AC為2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,梯子頂端到地面的距離A′D為1.5米,求小巷有多寬.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長均為1,建立如圖所示的直角坐標系,已知兩點A(0,2),B(4,1)
(1)請在x軸上畫出一點P,使得PA+PB的值最。
(2)請直接寫出:點P的坐標 ;PA+PB的最小值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料:
我們可以用配方法求一個二次三項式的最大值或最小值,例如:求代數式的最小值.方法如下:
解:
∵,得,
∴代數式的最小值是4.
請根據上述材料,解決下列問題:
(1)求代數式的最小值.
(2)用配方法求代數式的最值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數的圖象與x軸、y軸分別交于A、B兩點,與反比例函數的圖象交于C、D兩點,如果A點的坐標為(2,0),點C、D分別在第一、三象限,且OA=OB=AC=BD,試求一次函數和反比例函數的解析式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com