【題目】如圖,方格紙中每個小正方形的邊長均為1,建立如圖所示的直角坐標系,已知兩點A0,2),B4,1

1)請在x軸上畫出一點P,使得PA+PB的值最。

2)請直接寫出:點P的坐標  ;PA+PB的最小值為  

【答案】1)詳見解析;(2P點坐標為(0),PA+PB的最小值為5

【解析】

1)作A點關(guān)于x軸的對稱點A′,連結(jié)BA′x軸于P點,利用對稱的性質(zhì)得到PAPA′,則PA+PBPA′+PBBA′,于是利用兩點之間線段最短可判斷P點滿足條件;

2)先寫出點A′的坐標為(0,﹣2),再利用待定系數(shù)法求出直線BA′的解析式為yx2,然后解方程x20P點坐標,然后利用兩點間的距離公式求出BA′即可.

解:(1)如圖,點P為所作;

2A點關(guān)于x軸對稱的點A′的坐標為(0,﹣2),

設(shè)直線BA′的解析式為ykx+b

A′(0,﹣2),B4,1)得,解得,

∴直線BA′的解析式為yx2,

y0時,x20,解得x,

P點坐標為(,0),

PA+PB的最小值=,

故答案為:(0),5

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(背景介紹)勾股定理是幾何學中的明珠,充滿著魅力.千百年來,人們對它的證明趨之若騖,其中有著名的數(shù)學家,也有業(yè)余數(shù)學愛好者.向常春在1994年構(gòu)造發(fā)現(xiàn)了一個新的證法.

(小試牛刀)把兩個全等的直角三角形如圖1放置,其三邊長分別為a、b、c.顯然,∠DAB=B=90°,ACDE.請用a、b、c分別表示出梯形ABCD、四邊形AECD、EBC的面積,再探究這三個圖形面積之間的關(guān)系,可得到勾股定理:

S梯形ABCD=

SEBC= ,

S四邊形AECD= ,

則它們滿足的關(guān)系式為 ,經(jīng)化簡,可得到勾股定理.

(知識運用)(1)如圖2,鐵路上A、B兩點(看作直線上的兩點)相距40千米,CD為兩個村莊(看作兩個點),ADABBCAB,垂足分別為AB,AD=25千米,BC=16千米,則兩個村莊的距離為 千米(直接填空);

2)在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一個供應(yīng)站P,使得PC=PD,請用尺規(guī)作圖在圖2中作出P點的位置并求出AP的距離.

(知識遷移)借助上面的思考過程與幾何模型,求代數(shù)式最小值(0x16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.

(1)AEFC會平行嗎?說明理由.

(2)ADBC的位置關(guān)系如何?為什么?

(3)求證:BC平分∠DBE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(10),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位長度,再向右平移1個單位長度,分別得到點A,B的對應(yīng)點C,D.連接AC,BD.

(1)寫出點C,D的坐標及四邊形ABDC的面積.

(2)y軸上是否存在一點P,連接PA,PB,使S三角形PABS四邊形ABDC?若存在,求出點P的坐標,若不存在,試說明理由;

(3)Q是線段BD上的動點,連接QC,QO,當點QBD上移動時(不與B,D重合),給出下列結(jié)論:①的值不變;②的值不變,其中有且只有一個正確,請你找出這個結(jié)論并求值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有個填寫運算符號的游戲:在“”中的每個“口”內(nèi),填入+,-,×,÷中的某一個(可重復(fù)使用),然后計算結(jié)果.

(1)計算:

(2)若請推算“口”內(nèi)的運算符號.

(3)在“”的“口”內(nèi)填入運算符號后,使計算所得的數(shù)最小,直接寫出這個最小的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,鐵路MN和公路PQ在點O處交匯,QON=30°,公路PQA處距O240米,如果火車行駛時,周圍200米以內(nèi)會受到噪音的影響,那么火車在鐵路MN上沿ON方向以72千米/時的速度行駛時,求A處受噪音影響的時間。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,一個點從數(shù)軸上的原點開始.先向左移動6cm到達A點,再從A點向右移動10cm到達B點,點C是線段AB的中點.

1)點C表示的數(shù)是   ;

2)若點A以每秒2cm的速度向左移動,同時C、B兩點分別以每秒1cm4cm的速度向右移動,設(shè)移動時間為t秒,

運動t秒時,點C表示的數(shù)是   (用含有t的代數(shù)式表示);

t2秒時,CBAC的值為   

試探索:點A、BC在運動的過程中,線段CBAC總有怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,AB=2,A=120°,點P,Q,K分別為線段BC,CD,BD上的任意一點,則PK+QK的最小值為【 】

 A.1 B. C. 2 D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明站在池塘邊的點處,池塘的對面(小明的正北方向)處有一棵小樹,他想知道這棵樹距離他有多遠,于是他向正東方向走了12步到達電線桿旁,接著再往前走了12步,到達處,然后他改向正南方向繼續(xù)行走,當小明看到電線桿、小樹與自己現(xiàn)處的位置在一條直線上時,他共走了60.

1)根據(jù)題意,畫出示意圖(寫出作圖步驟);

2)如果小明一步大約40 ,估算出小明在點處時小樹與他的距離為多少米,并說明理由.

查看答案和解析>>

同步練習冊答案