【題目】我國古代偉大的數(shù)學(xué)家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的就用了這種分割方法,若BD=2AE=3,則正方形ODCE的邊長等于________.

【答案】1

【解析】

設(shè)正方形ODCE的邊長為x,則CD=CE=x,根據(jù)全等三角形的性質(zhì)得到AF=AE,BF=BD,根據(jù)勾股定理即可得到結(jié)論.

解:設(shè)正方形ODCE的邊長為x,
CD=CE=x
∵△AFO≌△AEO,BDO≌△BFO,
AF=AE,BF=BD,
AB=2+3=5
AC2+BC2=AB2,
∴(3+x2+2+x2=52
x=1,
∴正方形ODCE的邊長等于1,
故答案為:1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與坐標軸交于點A-1, 0)和點B0,-5).

(1)求該二次函數(shù)的解析式;

(2)已知該函數(shù)圖象的對稱軸上存在一點P,使得△ABP的周長最。埱蟪鳇cP的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解初三年級1000名學(xué)生的身體健康情況,從該年級隨機抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A39.546.5;B46.553.5;C53.560.5;D60.567.5;E67.574.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.

解答下列問題:

1)這次抽樣調(diào)查的樣本容量是 ,并補全頻數(shù)分布直方圖;

2C組學(xué)生的頻率為 ,在扇形統(tǒng)計圖中D組的圓心角是 度;

3)請你估計該校初三年級體重超過60kg的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017浙江省湖州市,第23題,10分)湖州素有魚米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢,一次性收購了20000kg淡水魚,計劃養(yǎng)殖一段時間后再出售.已知每天放養(yǎng)的費用相同,放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元(總成本=放養(yǎng)總費用+收購成本).

(1)設(shè)每天的放養(yǎng)費用是a萬元,收購成本為b萬元,求ab的值;

(2)設(shè)這批淡水魚放養(yǎng)t天后的質(zhì)量為mkg),銷售單價為y/kg.根據(jù)以往經(jīng)驗可知:mt的函數(shù)關(guān)系為;yt的函數(shù)關(guān)系如圖所示.

①分別求出當0≤t≤5050<t≤100時,yt的函數(shù)關(guān)系式;

②設(shè)將這批淡水魚放養(yǎng)t天后一次性出售所得利潤為W元,求當t為何值時,W最大?并求出最大值.(利潤=銷售總額﹣總成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機傳給其他三人中的某一人.求第二次傳球后球回到甲手里的概率.(請用“畫樹狀圖”的方式給出分析過程)

(2)如果甲跟另外n(n≥2)個人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是 (請直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校修建運動場,讓甲工程隊單獨做需要15天完成,讓乙工程隊單獨做需要10天完成.

1)如果讓甲、乙工程隊合做3天后,剩下的工程由乙工程隊完成,還需要多少天?

2)已知甲隊每天的費用為1000元,乙隊每天的費用為1600 元,從節(jié)約資金的角度,認為是甲、乙隊單獨做,還是兩隊合做完成?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格線的交點叫格點,格點的邊上的一點(請利用網(wǎng)格作圖,保留作圖痕跡).

(1)過點的垂線,交于點

(2)線段 的長度是點OPC的距離;

(3)的理由是 ;

(4)過點C的平行線;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)為推進書香校園建設(shè),在全校范圍開展圖書漂流活動,現(xiàn)需要購進一批甲、乙兩種規(guī)格的漂流書屋放置圖書.已知一個甲種規(guī)格的漂流書屋的價格比一個乙種規(guī)格的漂流書屋的價格高80元;如果購買2個甲種規(guī)格的漂流書屋和3個乙種規(guī)格的漂流書屋,一共需要花費960元.

1)求每個甲種規(guī)格的漂流書屋和每個乙種規(guī)格的漂流書屋的價格分別是多少元?

2)如果學(xué)校計劃購進這兩種規(guī)格的漂流書屋共15個,并且購買這兩種規(guī)格的漂流書屋的總費用不超過3040元,那么該學(xué)校至多能購買多少個甲種規(guī)格的漂流書屋?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個長方形紙片,邊長如圖所示,面積分別為.

1)①計算:______,______;

②用“<”“=”“>”填空:______

2)若一個正方形紙片的周長與乙長方形的周長相等,面積為.

①該正方形的邊長是______(用含的代數(shù)式表示);

②小方同學(xué)發(fā)現(xiàn):的差與無關(guān).請判斷小方的發(fā)現(xiàn)是否正確,并通過計算說明你的理由.

查看答案和解析>>

同步練習冊答案