【題目】如圖,在矩形ABCD中,AB3AD7,點EAD邊上的一點,連接BE,將BE繞點E順時針旋轉(zhuǎn)90°至BE,連接BD,當(dāng)△BED是直角三角形時,線段AE的長為_____

【答案】4.

【解析】

根據(jù)題意分兩種情況討論,EB'D90°,利用相似三角形的判定與性質(zhì)求得BE23DE,再根據(jù)勾股定理得到BE2AB2+AE2,進而求得AE的值;若EDB'90°,通過角角邊證明AEB≌△B'DE,進而得到AE的值.

BE繞點E順時針旋轉(zhuǎn)90°BE,

BEB'E,BEB'90°,

①若EB'D90°,

∴∠B'ED+∠B'DE90°,且AEB+∠B'ED90°,

∴∠AEBB'ED,且AEB'D90°

∴△AEB∽△B'DE,

BE23DE,

BE2AB2+AE2

∴37AE)=9+AE2,

AE

②若EDB'90°,

∵∠AEDB',BEB'E,AEBB'ED,

∴△AEB≌△B'DEAAS),

ABDE3,

AE4.

故答案為:4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若對于任意非零實數(shù)a,拋物線yax2+ax2a總不經(jīng)過點Px03,x0216),則寫出符合條件的點P的坐標(biāo):_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD,頂點A1,3)、B1,1)、C3,1).規(guī)定把正方形ABCD先沿x軸翻折,再向左平移1個單位為一次變換,如此這樣,連續(xù)經(jīng)過2014次變換后,正方形ABCD的對角線交點M的坐標(biāo)變?yōu)椋?)

A.-20122B.-2012,-2C.-2013,-2D.-2013,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)綜合實踐活動中,小明計劃測量城門大樓的高度,在點B處測得樓頂A的仰角為22°,他正對著城樓前進21米到達C處,再登上3米高的樓臺D處,并測得此時樓頂A的仰角為45°

1)求城門大樓的高度;

2)每逢重大節(jié)日,城門大樓管理處都要在A,B之間拉上繩子,并在繩子上掛一些彩旗,請你求出A,B之間所掛彩旗的長度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin22°≈,cos22°≈tan22°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暑假到了,即將迎來手機市場的銷售旺季.某商場銷售甲、乙兩種品牌的智能手機,這兩種手機的進價和售價如下表所示:

進價(元/部)

4000

2500

售價(元/部)

4300

3000

該商場計劃投入15.5萬元資金,全部用于購進兩種手機若干部,期望全部銷售后可獲毛利潤不低于2萬元.(毛利潤=(售價﹣進價)×銷售量)

1)若商場要想盡可能多的購進甲種手機,應(yīng)該安排怎樣的進貨方案購進甲乙兩種手機?

2)通過市場調(diào)研,該商場決定在甲種手機購進最多的方案上,減少甲種手機的購進數(shù)量,增加乙種手機的購進數(shù)量.已知乙種手機增加的數(shù)量是甲種手機減少的數(shù)量的2倍,而且用于購進這兩種手機的總資金不超過16萬元,該商場怎樣進貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)如圖1,在Rt△ABC中,∠B=90°BC=2AB=8,點DE分別是邊BC,AC的中點,連接DE. △EDC繞點C按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.

1)問題發(fā)現(xiàn)

當(dāng)時,當(dāng)時,

2)拓展探究

試判斷:當(dāng)0°≤α360°時,的大小有無變化?請僅就圖2的情況給出證明.

3)問題解決

當(dāng)△EDC旋轉(zhuǎn)至A、DE三點共線時,直接寫出線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個一元二次方程Max2+bx+c=0;Ncx2+bx+a=0,其中ac0,ac.下列四個結(jié)論中:正確的個數(shù)有(  )
①如果方程M有兩個相等的實數(shù)根,那么方程N也有兩個相等的實數(shù)根;
②如果ac0,方程M、N都有兩個不相等的實數(shù)根;
③如果2是方程M的一個根,那么是方程N的一個根;
④如果方程M和方程N有一個相同的根,那么這個根必是x=1

A.4個B.1個C.2個D.3個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD交AB于點P,AP=2,BP=6,∠APC=30°,則CD的長為(  )

A. B. 2 C. 2 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并用相關(guān)的思想方法解決問題.材料:為解方程x4x260可將方程變形為(x22x260然后設(shè)x2y,則(x22y2,原方程化為y2y60…

解得y1=﹣2,y23,當(dāng)y1=﹣2時,x2=﹣2無意義,舍去;

當(dāng)y23時,x2=﹣3,解得x±;

所以原方程的解為x1x2=﹣;

問題:(1)在原方程得到方程①的過程中,利用   法達到了降次的目的,體現(xiàn)了   的數(shù)學(xué)思想;

2)利用以上學(xué)習(xí)到的方法解下列方程(x2+5x+1)(x2+5x+7)=7

查看答案和解析>>

同步練習(xí)冊答案