【題目】如圖,,是以為直徑的上的點(diǎn),,弦于點(diǎn)

1)當(dāng)的切線時(shí),求證:

2)已知,是半徑的中點(diǎn),求線段的長.

【答案】1)證明見解析;(2)線段的長為

【解析】

1ABO的直徑知∠BAD+ABD90°,由PBO的切線知∠PBD+ABD90°,利用圓周角定理得出∠BAD=∠DCB,進(jìn)而得證;

2連接OC,根據(jù)得出AOC=∠BOC90°,利用勾股定理求出CE的長,通過證明△ADE∽△CBE得出,進(jìn)而求解.

1)證明:∵ABO的直徑,

∴∠ADB90°,即∠BAD+ABD90°,

PBO的切線,

∴∠ABP90°,即∠PBD+ABD90°,

∴∠BAD=∠PBD,

又∵∠BAD=∠DCB

∴∠PBD=∠DCB;

2)解:連接OC,

AB是直徑,

∴∠AOC=∠BOC90°,

OA4E是半徑OA的中點(diǎn),

,AE2BE6,

∵∠A=∠C、∠AED=∠CEB

∴△ADE∽△CBE,

,即,

解得,,

線段的長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB的直徑,PBA延長線上的一點(diǎn),D上(不與點(diǎn)A,點(diǎn)B重合),連結(jié)PD于點(diǎn)C,且PC=OB.設(shè),下列說法正確的是(

A. ,則

B. ,則

C. ,則

D. ,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在某一路段,規(guī)定汽車限速行駛,交通警察在此限速路段的道路上設(shè)置了監(jiān)測區(qū),其中點(diǎn)CD為監(jiān)測點(diǎn),已知點(diǎn)C、DB在同一直線上,且ACBC,CD400米,tanADC2,∠ABC35°

1)求道路AB段的長(結(jié)果精確到1米)

2)如果道路AB的限速為60千米/時(shí),一輛汽車通過AB段的時(shí)間為90秒,請你判斷該車是否是超速,并說明理由;參考數(shù)據(jù):sin35°≈0.5736,cos35°≈0.8192tan35°≈0.7002

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點(diǎn)分別在軸的負(fù)半軸、軸的正半軸上,點(diǎn)在第二象限.將矩形繞點(diǎn)順時(shí)針旋轉(zhuǎn),使點(diǎn)落在軸上,得到矩形相交于點(diǎn).若經(jīng)過點(diǎn)的反比例函數(shù)的圖象交于點(diǎn)的圖象交于點(diǎn)的長為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在一次數(shù)學(xué)興趣小組活動(dòng)中,對一個(gè)數(shù)學(xué)問題作如下探究:

問題情境:(1)如圖1,四邊形中,,點(diǎn)邊的中點(diǎn),連接并延長交的延長線于點(diǎn),求證:;(表示面積)

問題遷移:(2)如圖2:在已知銳角內(nèi)有一個(gè)定點(diǎn).過點(diǎn)任意作一條直線分別交射線于點(diǎn).小明將直線繞著點(diǎn)旋轉(zhuǎn)的過程中發(fā)現(xiàn),的面積存在最小值,請問當(dāng)直線在什么位置時(shí),的面積最小,并說明理由.

實(shí)際應(yīng)用:(3)如圖3,若在道路之間有一村莊發(fā)生疫情,防疫部門計(jì)劃以公路和經(jīng)過防疫站的一條直線為隔離線,建立個(gè)面積最小的三角形隔離區(qū),若測得試求的面積.(結(jié)果保留根號)(參考數(shù)據(jù):)

拓展延伸:(4)如圖4,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)分別為,過點(diǎn)的直線與四邊形一組對邊相交,將四邊形分成兩個(gè)四邊形,求其中以點(diǎn)為頂點(diǎn)的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把球放在長方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知,則球的半徑長是(

A. 2B. 2.5C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:sin﹣x=﹣sinx,cos﹣x=cosx,sinx+y=sinxcosy+cosxsiny

據(jù)此判斷下列等式成立的是 (寫出所有正確的序號)

①cos﹣60°=﹣;

②sin75°=

③sin2x=2sinxcosx;

④sinx﹣y=sinxcosy﹣cosxsiny

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,點(diǎn)A0,3),點(diǎn)Bx軸上一動(dòng)點(diǎn),連接AB,線段AB繞著點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)90°至線段CB,過點(diǎn)C作直線ly軸,在直線l上有一點(diǎn)D位于點(diǎn)C下方,滿足CDBO,則當(dāng)點(diǎn)B從(﹣3,0)平移到(30)的過程中,點(diǎn)D的運(yùn)動(dòng)路徑長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為出行方便,近日來越來越多的重慶市民使用起了共享單車,圖1為單車實(shí)物圖,圖2為單車示意圖,AB與地面平行,點(diǎn)A、BD共線,點(diǎn)D、F、G共線,坐墊C可沿射線BE方向調(diào)節(jié).已知∠ABE=70°,∠EAB=45°,車輪半徑為30cmBE=40cm.小明體驗(yàn)后覺得當(dāng)坐墊C離地面高度為0.9m時(shí),騎著比較舒適,此時(shí)CE的長約為( )(結(jié)果精確到1cm,參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,tan70°≈2.75≈1.41

A.26cmB.24cmC.22cmD.20cm

查看答案和解析>>

同步練習(xí)冊答案