【題目】學(xué)習(xí)了正多邊形之后,小馬同學(xué)發(fā)現(xiàn)利用對稱、旋轉(zhuǎn)等方法可以計(jì)算等分正多邊形面積的方案.

1)請聰明的你將下面圖、圖、圖的等邊三角形分別割成2個(gè)、3個(gè)、4個(gè)全等三角形;

2)如圖,等邊△ABC邊長AB4,點(diǎn)O為它的外心,點(diǎn)M、N分別為邊ABBC上的動(dòng)點(diǎn)(不與端點(diǎn)重合),且∠MON120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;

3)如圖,等邊△ABC的邊長AB4,點(diǎn)P為邊CA延長線上一點(diǎn),點(diǎn)Q為邊AB延長線上一點(diǎn),點(diǎn)DBC邊中點(diǎn),且∠PDQ120°,若PAx,請用含x的代數(shù)式表示△BDQ的面積SBDQ

【答案】1)詳見解析;(22+2;(3SBDQx+

【解析】

1)根據(jù)要求利用全等三角形的判定和性質(zhì)畫出圖形即可.

2)如圖④中,作OEABE,OFBCF,連接OB.證明△OEM≌△OFNASA),推出EMFN,ONOMSEOMSNOF,推出S四邊形BMONS四邊形BEOF=定值,證明RtOBERtOBFHL),推出BM+BNBE+EM+BFFN2BE=定值,推出欲求最小值,只要求出l的最小值,因?yàn)?/span>lBM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因?yàn)?/span>OMON,根據(jù)垂線段最短可知,當(dāng)OMOE重合時(shí),OM定值最小,由此即可解決問題.

3)如圖⑤中,連接AD,作DEABE,DFACF.證明△PDF≌△QDEASA),即可解決問題.

解:(1)如圖1,作一邊上的中線可分割成2個(gè)全等三角形,

如圖2,連接外心和各頂點(diǎn)的線段可分割成3個(gè)全等三角形,

如圖3,連接各邊的中點(diǎn)可分割成4個(gè)全等三角形,

2)如圖中,作OEABE,OFBCF,連接OB

∵△ABC是等邊三角形,O是外心,

OB平分∠ABC,∠ABC60°∵OEABOFBC,

OEOF

∵∠OEB=∠OFB90°,

∴∠EOF+EBF180°,

∴∠EOF=∠NOM120°,

∴∠EOM=∠FON,

∴△OEM≌△OFNASA),

EMFN,ONOMSEOMSNOF,

S四邊形BMONS四邊形BEOF=定值,

OBOB,OEOF,∠OEB=∠OFB90°,

RtOBERtOBFHL),

BEBF

BM+BNBE+EM+BFFN2BE=定值,

∴欲求最小值,只要求出l的最小值,

lBM+BN+ON+OM=定值+ON+OM,

欲求最小值,只要求出ON+OM的最小值,

OMON,根據(jù)垂線段最短可知,當(dāng)OMOE重合時(shí),OM定值最小,

此時(shí)定值最小,s×2×l2+2++4+,

的最小值=2+2

3)如圖中,連接AD,作DEABE,DFACF

∵△ABC是等邊三角形,BDDC,

AD平分∠BAC,

DEABDFAC,

DEDF,

∵∠DEA=∠DEQ=∠AFD90°,

∴∠EAF+EDF180°,

∵∠EAF60°,

∴∠EDF=∠PDQ120°,

∴∠PDF=∠QDE

∴△PDF≌△QDEASA),

PFEQ

RtDCF中,∵DC2,∠C60°,∠DFC90°,

CFCD1,DF,

同法可得:BE1DEDF,

AFACCF413PAx,

PFEQ3+x,

BQEQBE2+x

SBDQBQDE2+x)×x+

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)y.(其中mk0)圖象交于A(﹣4,2),B2,n)兩點(diǎn).

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)求△ABO的面積;

3)請直接寫出當(dāng)一次函數(shù)值大于反比例函數(shù)值時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知RtOAB,OAB90,ABO30,斜邊OB4,將RtOAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)60,得到△COD,如圖1,連接BC

1)求BC的長度;

2)如圖2,點(diǎn)M,N同時(shí)從點(diǎn)O出發(fā),在△OCB邊上運(yùn)動(dòng),M沿OCB路徑勻速運(yùn)動(dòng),N沿OBC路徑勻速運(yùn)動(dòng),當(dāng)兩點(diǎn)相遇時(shí)運(yùn)動(dòng)停止,已知點(diǎn)M的運(yùn)動(dòng)速度為1.5個(gè)單位/秒,點(diǎn)N的運(yùn)動(dòng)速度為1個(gè)單位/秒,設(shè)運(yùn)動(dòng)時(shí)間為x秒,△OMN的面積為y,求y關(guān)于x的函數(shù)解析式,并直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小區(qū)樓房附近有一個(gè)斜坡,坡角為30°,小王發(fā)現(xiàn)樓房在水平地面與斜坡處形成的投影中,在斜坡上的影子長CD=6m,坡腳到樓房的距離CB=8m.在D點(diǎn)處觀察點(diǎn)A的仰角為60°.求樓房AB的高度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分)某調(diào)查小組采用簡單隨機(jī)抽樣方法,對某市部分中小學(xué)生一天中陽光體育運(yùn)動(dòng)時(shí)間進(jìn)行了抽樣調(diào)查,并把所得數(shù)據(jù)整理后繪制成如下的統(tǒng)計(jì)圖:

(1)該調(diào)查小組抽取的樣本容量是多少?

(2)求樣本學(xué)生中陽光體育運(yùn)動(dòng)時(shí)間為1.5小時(shí)的人數(shù),并補(bǔ)全占頻數(shù)分布直方圖;

(3)請估計(jì)該市中小學(xué)生一天中陽光體育運(yùn)動(dòng)的平均時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中,ABC為格點(diǎn)三角形(頂點(diǎn)在網(wǎng)格線的交點(diǎn)).

1)將ABC向上平移2個(gè)單位得到A1B1C1,請畫出A1B1C1;

2)將ABC繞著某點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)90°后,得到A2B2C2,請畫出旋轉(zhuǎn)中心O,并直接寫出在此旋轉(zhuǎn)過程中,線段AB掃過的區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由我國完全自主設(shè)計(jì)、自主建造的首艘國產(chǎn)航母于20185月成功完成第一次海上試驗(yàn)任務(wù).如圖,航母由西向東航行,到達(dá)處時(shí),測得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時(shí)間后到達(dá)B處,測得小島位于它的北偏東方向.如果航母繼續(xù)航行至小島的正南方向的處,求還需航行的距離的長.

(參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師將1個(gè)黑球和若干個(gè)白球放入一個(gè)不透明的口袋中并攪勻,讓學(xué)生進(jìn)行摸球試驗(yàn),每次摸出一個(gè)球(放回),下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù).

摸球的次數(shù)n

100

150

200

500

800

1000

摸到黑球的次數(shù)m

23

31

60

130

203

251

摸到黑球的頻率

0.23

0.21

0.30

_____

_____

_____

1)補(bǔ)全上表中的有關(guān)數(shù)據(jù),根據(jù)上表數(shù)據(jù)估計(jì)從袋中摸出一個(gè)黑球的概率是______.(結(jié)果都保留小數(shù)點(diǎn)后兩位)

2)估算袋中白球的個(gè)數(shù)為________

3)在(2)的條件下,若小強(qiáng)同學(xué)有放回地連續(xù)兩次摸球,用畫樹狀圖或列表的方法計(jì)算出兩次都摸出白球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線C1yax2x+2a0)與x軸交于A、B(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C

1)如圖1,若A2,0),連ACBC

直接寫出C1的解析式及△ABC的面積;

將△AOC繞某一點(diǎn)逆時(shí)針旋轉(zhuǎn)90°至△AOC′(其中AO、C的對應(yīng)點(diǎn)分別為A′、O′、C′).若旋轉(zhuǎn)后的△AOC′恰有一邊的兩個(gè)端點(diǎn)落在拋物線C1的圖象上,求點(diǎn)A′的坐標(biāo);

2)如圖2,平移拋物線C1使平移后的新拋物線C2頂點(diǎn)在原點(diǎn),P,0)是x軸正半軸上一點(diǎn),過P作直線交C2的圖象于A、B,過A的直線yx+bC2于點(diǎn)C,過Px軸的垂線交BC于點(diǎn)M,設(shè)點(diǎn)M的縱坐標(biāo)為n,試判斷an是否為定值?若是,求這個(gè)定值,若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案