【題目】在平面直角坐標(biāo)系中的兩個圖形,給出如下定義:為圖形上任意一點(diǎn),為圖形上任意一點(diǎn),如果兩點(diǎn)間的距離有最小值,那么稱這個最小值為圖形間的“和睦距離”,記作,若圖形有公共點(diǎn),則

(1)如圖(1),,,⊙的半徑為2,則          ;

(2)如圖(2),已知的一邊軸上,上,且,

內(nèi)一點(diǎn),若、分別且⊙EF,且,判斷與⊙的位置關(guān)系,并求出點(diǎn)的坐標(biāo);

②若以為半徑,①中的為圓心的⊙,有,直接寫出的取值范圍    .

【答案】12,;(2)①是⊙的切線,;②

【解析】

1)根據(jù)圖形M,N間的“和睦距離”的定義結(jié)合已知條件求解即可.

2)①連接DF,DE,作DHABH.設(shè)OCx.首先證明∠CBO30,再證明DHDE即可證明的切線,再求出OE,DE的長即可求出點(diǎn)D的坐標(biāo).

②根據(jù),得到不等式組解決問題即可.

1)∵A0,1),C3,4),⊙C的半徑為2,

dC,⊙C)=2,

dO,⊙C)=AC2,

故答案為2;

2連接,作.設(shè)

,

解得,

,

,

的切線,

平分,

,

,

,

,

的切線.

,

設(shè),

,

,

,

,

,

②∵

B0

BD=

,,

解得

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、BC、DO上的四個點(diǎn),ADO的直徑,過點(diǎn)C的切線與AB的延長線垂直于點(diǎn)E,連接AC、BD相交于點(diǎn)F

1)求證:AC平分∠BAD;

2)若O的半徑為,AC6,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,ACAB,BCO于點(diǎn)D,點(diǎn)E在劣弧BD上,DE的延長線交AB的延長線于點(diǎn)F,連接AEBD于點(diǎn)G

1)求證:∠AED=∠CAD;

2)若點(diǎn)E是劣弧BD的中點(diǎn),求證:ED2EGEA

3)在(2)的條件下,若BOBFDE2,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)CD、B、F在一條直線上,且ABBDDEBD,ABCD,CEAF

求證:(1)△ABF≌△CDE

2CEAF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:三角形一邊上的點(diǎn)將該邊分為兩條線段,且這兩條線段的積等于這個點(diǎn)到該邊所對頂點(diǎn)連線的平方,則稱這個點(diǎn)為三角形該邊的好點(diǎn)”.如圖1,ABC中,點(diǎn)DBC邊上一點(diǎn),連結(jié)AD,若,則稱點(diǎn)DABCBC邊上的好點(diǎn)”.

1)如圖2ABC的頂點(diǎn)是網(wǎng)格圖的格點(diǎn),請僅用直尺畫出AB邊上的一個好點(diǎn)”.

2ABC中,BC=9,,點(diǎn)DBC邊上的好點(diǎn),求線段BD的長.

3)如圖3,ABC的內(nèi)接三角形,OHAB于點(diǎn)H,連結(jié)CH并延長交于點(diǎn)D.

①求證:點(diǎn)HBCDCD邊上的好點(diǎn)”.

②若的半徑為9,∠ABD=90°OH=6,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD中,E是對角線AC上一點(diǎn),DE=EC,以AE為直徑的⊙OCD相切于點(diǎn)D,點(diǎn)B在⊙O上,連接OB

1)求證:DE=OE

2)若CDAB,求證:BC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,OAB邊上的點(diǎn),以O為圓心,OB為半徑的⊙0AC相切于點(diǎn)D,BD平分∠ABCADOD,AB12,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的半徑為 4,是圓的直徑,點(diǎn)的切線上的一個動點(diǎn),連接于點(diǎn),弦平行于,連接.

(1)試判斷直線的位置關(guān)系,并說明理由;

(2)當(dāng)__________時(shí),四邊形為菱形;

(3)當(dāng)___________時(shí),四邊形為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是長為10m,傾斜角為30°的自動扶梯,平臺BD與大樓CE垂直,且與扶梯AB的長度相等,在B處測得大樓頂部C的仰角為65°,求大樓CE的高度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin65°=0.90,tan65°=2.14

查看答案和解析>>

同步練習(xí)冊答案