【題目】如圖,將一長(zhǎng)方形紙片放在平面直角坐標(biāo)系中,,,動(dòng)點(diǎn)從點(diǎn)出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度沿向終點(diǎn)運(yùn)動(dòng),運(yùn)動(dòng)秒時(shí),動(dòng)點(diǎn)從點(diǎn)出發(fā)以相同的速度沿向終點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)、其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).

設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為:(秒)

1____________________(用含的代數(shù)式表示)

2)當(dāng)時(shí),將沿翻折,點(diǎn)恰好落在邊上的點(diǎn)處,求點(diǎn)的坐標(biāo)及直線的解析式;

3)在(2)的條件下,點(diǎn)是射線上的任意一點(diǎn),過點(diǎn)作直線的平行線,與軸交于點(diǎn),設(shè)直線的解析式為,當(dāng)點(diǎn)與點(diǎn)不重合時(shí),設(shè)的面積為,求之間的函數(shù)關(guān)系式.

【答案】16-tt+;(2D(1,3)y=x+;(3

【解析】

1)根據(jù)點(diǎn)E,F的運(yùn)動(dòng)軌跡和速度,即可得到答案;

2)由題意得:DF=OF=,DE=OE=5,過點(diǎn)EEGBC于點(diǎn)G,根據(jù)勾股定理得DG=4,進(jìn)而得D(1,3),根據(jù)待定系數(shù)法,即可得到答案;

3)根據(jù)題意得直線直線的解析式為:,從而得M(,3),分2種情況:①當(dāng)點(diǎn)M在線段DB上時(shí), ②當(dāng)點(diǎn)MDB的延長(zhǎng)線上時(shí),分別求出之間的函數(shù)關(guān)系式,即可.

,,,

OA=6OC=3,

AE=t×1= t,

6-t(t+)×1=t+,

故答案是:6-t,t+

2)當(dāng)時(shí),6-t=5,t+=

∵將沿翻折,點(diǎn)恰好落在邊上的點(diǎn)處,

DF=OF=,DE=OE=5

過點(diǎn)EEGBC于點(diǎn)G,則EG=OC=3,CG=OE=5

DG=,

CD=CG-DG=5-4=1,

D(13),

設(shè)直線的解析式為:y=kx+b,

D(13),E(5,0)代入y=kx+b,得 ,解得:,

∴直線的解析式為:y=x+

3)∵MNDE,

∴直線直線的解析式為:,

y=3,代入,解得:x=,

M(3)

①當(dāng)點(diǎn)M在線段DB上時(shí),BM=6-()=,

=,

②當(dāng)點(diǎn)MDB的延長(zhǎng)線上時(shí),BM=-6=,

=,

綜上所述:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)為20cm,∠ABC120°.動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)A出發(fā),其中P4cm/s的速度,沿ABC的路線向點(diǎn)C運(yùn)動(dòng);Q2cm/s的速度,沿AC的路線向點(diǎn)C運(yùn)動(dòng).當(dāng)P、Q到達(dá)終點(diǎn)C時(shí),整個(gè)運(yùn)動(dòng)隨之結(jié)束,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1)在點(diǎn)P、Q運(yùn)動(dòng)過程中,請(qǐng)判斷PQ與對(duì)角線AC的位置關(guān)系,并說明理由;

2)若點(diǎn)Q關(guān)于菱形ABCD的對(duì)角線交點(diǎn)O的對(duì)稱點(diǎn)為M,過點(diǎn)P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點(diǎn)N

①當(dāng)t為何值時(shí),點(diǎn)P、M、N在一直線上?

②當(dāng)點(diǎn)P、M、N不在一直線上時(shí),是否存在這樣的t,使得PMN是以PN為一直角邊的直角三角形?若存在,請(qǐng)求出所有符合條件的t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市用元購(gòu)進(jìn)某種干果后進(jìn)行銷售,由于銷售狀況良好,超市又調(diào)撥元資金購(gòu)進(jìn)該種干果,購(gòu)進(jìn)干果的數(shù)量是第一次的倍,但這次每干克的進(jìn)價(jià)比第一次的進(jìn)價(jià)提高了元.

1)該種干果第一次的進(jìn)價(jià)是每千克多少元?

2)如果超市按每千克元的價(jià)格銷售,當(dāng)大部分干果售出后,余下的千克按售價(jià)的折售完,超市銷售這種干果共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°

1)作∠BAC的平分線,交BC于點(diǎn)D;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)

2)在(1)的條件下,若BD5CD3,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工廠接到訂單生產(chǎn)如圖所示的巧克力包裝盒子,每個(gè)盒子由3個(gè)長(zhǎng)方形側(cè)面和2個(gè)正三角形底面組成,倉(cāng)庫有甲、乙兩種規(guī)格的紙板共2600張,其中甲種規(guī)格的紙板剛好可以裁出4個(gè)側(cè)面(如圖),乙種規(guī)格的紙板可以裁出3個(gè)底面和2個(gè)側(cè)面(如圖),裁剪后邊角料(圖中陰影部分)不再利用.

1)若裁剪出的側(cè)面和底面恰好全部用完,問兩種規(guī)格的紙板各有多少?gòu)垼?/span>

2)一共能生產(chǎn)多少個(gè)巧克力包裝盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解方程:

2)列分式方程解應(yīng)用題:

用電腦程序控制小型賽車進(jìn)行比賽,暢想號(hào)逐夢(mèng)號(hào)兩賽車進(jìn)入了最后的決賽.比賽中,兩車從起點(diǎn)同時(shí)出發(fā),暢想號(hào)到達(dá)終點(diǎn)時(shí),逐夢(mèng)號(hào)離終點(diǎn)還差.從賽后數(shù)據(jù)得知兩車的平均速度相差.暢想號(hào)的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把拋物線沿軸向右平移個(gè)單位后,再沿軸翻折得到拋物線稱為第一次操作,把拋物線沿軸向右平移個(gè)單位后,再沿軸翻折得到拋物線稱為第二次操作,…,以此類推,則拋物線經(jīng)過第此操作后得到的拋物線的解析式為(

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)B在線段CE上.

(感知)(1)如圖①,∠C=∠ABD=∠E90°,易知ACB∽△AED(不要求證明);

(拓展)(2)如圖②,ACE中,ACAE,且∠ABD=∠E,求證:ACB∽△BED;

(應(yīng)用)(3)如圖③,ACE為等邊三角形,且∠ABD60°,AC6,BC2,則ABDBDE的面積比為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長(zhǎng)為的正方形繞點(diǎn)逆時(shí)針旋轉(zhuǎn)度后得到正方形,邊交于點(diǎn),則四邊形的周長(zhǎng)是_______________

查看答案和解析>>

同步練習(xí)冊(cè)答案