【題目】如圖是一份汽車票價(jià)表,李麗星期一、三、五要乘汽車上下班,星期二、四乘汽車上班,而搭朋友的車回家;她應(yīng)該買什么樣的票合算?如果周末她要乘汽車去公園,那么她選哪種票合算?
汽車公司票價(jià)表
單程票 | 元 |
周票 | 元 |
【答案】李麗每星期上、下班應(yīng)買單程票;若李麗周末去公園,應(yīng)買周票.
【解析】
分別計(jì)算出李麗每星期上、下班買單程票需要花費(fèi)的總額和李麗每星期上、下班買周票需要的錢數(shù),然后比較一下,哪一種便宜,就買哪一種;分別計(jì)算出李麗周末去公園買單程票需要花費(fèi)的總額和周末去公園買周票需要的錢數(shù),然后比較一下,哪一種便宜,就買哪一種.
李麗每星期上、下班買單程票需要的花費(fèi):(元)
周票需要元,
∵,
∴應(yīng)買單程票;
若李麗周末去公園,則往返需要用元,則買單程票需要的花費(fèi):(元)
周票需要元,
∵,
∴李麗應(yīng)買周票.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算與解方程
(1)計(jì)算:(π﹣3)0 ﹣2sin45°﹣( )﹣1 .
(2)解方程:x(x﹣6)=﹣9.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB為⊙O的直徑,AB=4.動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒π個(gè)單位的速度在⊙O上按順時(shí)針方向運(yùn)動(dòng)一周.設(shè)動(dòng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,點(diǎn)C是圓周上一點(diǎn),且∠AOC=40°,當(dāng)t=秒時(shí),點(diǎn)P與點(diǎn)C中心對(duì)稱,且對(duì)稱中心在直徑AB上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:
(1)∠BAE的度數(shù);
(2)∠DAE的度數(shù);
(3)探究:小明認(rèn)為如果條件∠B=70°,∠C=30°改成∠B-∠C=40°,也能得出∠DAE的度數(shù)?若能,請(qǐng)你寫出求解過程;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:把一個(gè)半圓與拋物線的一部分組成的封閉圖形稱為“蛋圓”.
如圖,拋物線y=x2﹣2x﹣3與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)D,以AB為直徑,在x軸上方作半圓交y軸于點(diǎn)C,半圓的圓心記為M,此時(shí)這個(gè)半圓與這條拋物線x軸下方部分組成的圖形就稱為“蛋圓”.
(1)直接寫出點(diǎn)A,B,C的坐標(biāo)及“蛋圓”弦CD的長(zhǎng);
A , B , C , CD=;
(2)如果一條直線與“蛋圓”只有一個(gè)交點(diǎn),那么這條直線叫做“蛋圓”的切線.
①求經(jīng)過點(diǎn)C的“蛋圓”切線的解析式;
②求經(jīng)過點(diǎn)D的“蛋圓”切線的解析式;
(3)由(2)求得過點(diǎn)D的“蛋圓”切線與x軸交點(diǎn)記為E,點(diǎn)F是“蛋圓”上一動(dòng)點(diǎn),試問是否存在S△CDE=S△CDF , 若存在請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由;
(4)點(diǎn)P是“蛋圓”外一點(diǎn),且滿足∠BPC=60°,當(dāng)BP最大時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,2),△AOB為等邊三角形,P是x軸上一個(gè)動(dòng)點(diǎn)(不與原O重合),以線段AP為一邊在其右側(cè)作等邊三角形△APQ.
(1)求點(diǎn)B的坐標(biāo);
(2)在點(diǎn)P的運(yùn)動(dòng)過程中,∠ABQ的大小是否發(fā)生改變?如不改變,求出其大;如改變,請(qǐng)說明理由.
(3)連接OQ,當(dāng)OQ∥AB時(shí),求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面一段:
計(jì)算
觀察發(fā)現(xiàn),上式從第二項(xiàng)起,每項(xiàng)都是它前面一項(xiàng)的倍,如果將上式各項(xiàng)都乘以,所得新算式中除個(gè)別項(xiàng)外,其余與原式中的項(xiàng)相同,于是兩式相減將使差易于計(jì)算.
解:設(shè),①
則,②
②-①得,則.
上面計(jì)算用的方法稱為“錯(cuò)位相減法”,如果一列數(shù),從第二項(xiàng)起每一項(xiàng)與前一項(xiàng)之比都相等(本例中是都等于),那么這列數(shù)的求和問題,均可用上述“錯(cuò)位相減”法來解決.
下面請(qǐng)你觀察算式是否具備上述規(guī)律?若是,請(qǐng)你嘗試用“錯(cuò)位相減”法計(jì)算上式的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-2(k-3)x+k2-4k-1=0.
(1)若這個(gè)方程有實(shí)數(shù)根,求k的取值范圍;
(2)若這個(gè)方程有一個(gè)根為1,求k的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)為a的正方形ABCD中,E、F是邊AD,AB上兩點(diǎn)(與端點(diǎn)不重合),且AE=BF.連接CE,DF相交于點(diǎn)M,
(1)當(dāng)E為邊AD的中點(diǎn)時(shí),則DF的長(zhǎng)為 (用含a的式子表示)
(2)求證:∠MCB+∠MFB=180°.
(3)點(diǎn)M能成為DF的中點(diǎn)嗎?如果能,求出此時(shí)CM的長(zhǎng)(用含a的式子表示);如果不能,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com