【題目】一個大的等腰三角形能被分割為兩個小等腰三角形,則該大等腰三角形頂角的度數(shù)是________

【答案】108°或90°或36°或

【解析】因為題中沒有指明這個等腰三角形是什么形狀,故應(yīng)該分四種情況進行分析,從而得到:

(1)如圖1,△ABC中,AB=AC,BD=AD,AC=CD,求∠BAC的度數(shù).

∵AB=AC,BD=AD,AC=CD,

∴∠B=∠C=∠BAD,∠CDA=∠CAD,

∵∠CDA=2∠B,

∴∠CAB=3∠B,

∵∠BAC+∠B+∠C=180°,

∴5∠B=180°,

∴∠B=36°,

∴∠BAC=108°.

(2)如圖2,△ABC中,AB=AC,AD=BD=CD,求∠BAC的度數(shù).

∵AB=AC,AD=BD=CD,

∴∠B=∠C=∠DAC=∠DAB

∴∠BAC=2∠B

∵∠BAC+∠B+∠C=180°,

∴4∠B=180°,

∴∠B=45°,

∴∠BAC=90°.

(3)如圖3,△ABC中,AB=AC,BD=AD=BC,求∠BAC的度數(shù).

∵AB=AC,BD=AD=BC,

∴∠B=∠C,∠A=∠ABD,∠BDC=∠C

∵∠BDC=2∠A,

∴∠C=2∠A=∠B,

∵∠A+∠ABC+∠C=180°,

∴5∠A=180°,

∴∠A=36°.

(4)如圖4,△ABC中,AB=AC,BD=AD,CD=BC,求∠BAC的度數(shù).

假設(shè)∠A=x,AD=BD,

∴∠DBA=x,

∵AB=AC,

∴∠DBC=﹣x,

CD=BC,

∴∠BDC=2x=∠DBC=﹣x,

解得:x=

故答案為:108°或90°或36°或

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)y=-x2+bx+c的圖象與x軸相交于A(-5,0),B(-1,0).

(1)求這個二次函數(shù)的關(guān)系式;

(2)如果要通過適當(dāng)?shù)钠揭?/span>,使得這個函數(shù)的圖象與x軸只有一個交點,那么應(yīng)該怎樣平移?向右還是向左?或者是向上還是向下?應(yīng)該平移向個單位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABP中,CBP邊上一點,∠PAC=PBA,O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點E.(1)求證:PA是⊙O的切線;

(2)過點CCFAD,垂足為點F,延長CFAB于點G,若AG·AB=12,求AC的長;(3)在滿足(2)的條件下,若AFFD=12,GF=1,求⊙O的半徑及sinACE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點Py軸上,⊙Px軸于A,B兩點,連接BP并延長交⊙P于點C,過點C的直線y2xbx軸于點D,且⊙P的半徑為,AB4.

(1)求點B,P,C的坐標(biāo);(2)求證:CD是⊙P的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( 。

A. 當(dāng)AB=BC時,它是菱形 B. 當(dāng)ACBD時,它是菱形

C. 當(dāng)∠ABC=90°時,它是矩形 D. 當(dāng)AC=BD時,它是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠接到一批服裝加工業(yè)務(wù),若由甲車間獨做,可比規(guī)定時間提前8天完成,甲車間在制作完這批服裝的60%后因另有任務(wù),立即將剩余服裝全部交給乙車間,結(jié)果剛好按規(guī)定時間完成.已知甲、乙兩個車間每天分別制作200120件服裝,求該工廠所接的這批服裝的件數(shù)和規(guī)定時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】y=x2的圖象向上平移2個單位.

1求新圖象的解析式、頂點坐標(biāo)和對稱軸;

2畫出平移后的函數(shù)圖象;

3求平移后的函數(shù)的最大值或最小值,并求對應(yīng)的x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在5次打靶測試中命中的環(huán)數(shù)如下:

甲:8,8,7,8,9

乙:5,9,7,10,9

(1)計算甲、乙兩人射擊成績的平均數(shù).

(2)計算甲、乙兩人的射擊成績的方差,并說明誰的成績更穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD的對角線ACBD交于O點,分別過頂點B,C作兩對角線的平行線交于點E,得平行四邊形OBEC.

(1)如果四邊形ABCD為矩形(如圖),四邊形OBEC為何種四邊形?請證明你的結(jié)論;

(2)當(dāng)四邊形ABCD    形時,四邊形OBEC是正方形.

查看答案和解析>>

同步練習(xí)冊答案