【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.
(1)請(qǐng)你補(bǔ)全這個(gè)輸水管道的圓形截面;
(2)若這個(gè)輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個(gè)圓形截面的半徑.
【答案】
(1)解:先作弦AB的垂直平分線;在弧AB上任取一點(diǎn)C連接AC,作弦AC的垂直平分線,兩線交點(diǎn)作為圓心O,OA作為半徑,畫圓即為所求圖形.
(2)解:過O作OE⊥AB于D,交弧AB于E,連接OB.
∵OE⊥AB
∴BD= AB= ×16=8cm
由題意可知,ED=4cm
設(shè)半徑為xcm,則OD=(x﹣4)cm
在Rt△BOD中,由勾股定理得:
OD2+BD2=OB2
∴(x﹣4)2+82=x2
解得x=10.
即這個(gè)圓形截面的半徑為10cm.
【解析】(1)在弧AB上任取一點(diǎn)C連接AC,分別作弦AB、AC的垂直平分線,兩線的交點(diǎn)即為圓心O,以O(shè)A為半徑畫圓即為所求圖形.
(2)過O作OE⊥AB于D,交弧AB于E,連接OB;由垂徑定理得BD= AB,設(shè)半徑為xcm,則OD=(x﹣4)cm,在Rt△BOD中,由勾股定理得:
OD2+BD2=OB2,解之即可得出得出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的動(dòng)點(diǎn)(不與A,B重合),過M點(diǎn)作MN∥BC交AC于點(diǎn)N.以MN為直徑作⊙O,并在⊙O內(nèi)作內(nèi)接矩形AMPN.令A(yù)M=x.
(1)用含x的代數(shù)式表示△MNP的面積S;
(2)當(dāng)x為何值時(shí),⊙O與直線BC相切;
(3)在動(dòng)點(diǎn)M的運(yùn)動(dòng)過程中,記△MNP與梯形BCNM重合的面積為y,試求y關(guān)于x的函數(shù)表達(dá)式,并求x為何值時(shí),y的值最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn) A(-1,0)和點(diǎn)B(1,2) ,在 y 軸正半軸上確定點(diǎn) P ,使得△ABP 為直角三角形,則滿足條件的點(diǎn) P 的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,形如量角器的半圓O的直徑DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°, BC=12cm,半圓O以 2cm/s 的速度從左向右運(yùn)動(dòng),在運(yùn)動(dòng)過程中,點(diǎn) D 、E 始終在直線BC 上.設(shè)運(yùn)動(dòng)時(shí)間為t(s) ,當(dāng)t=0s時(shí),半圓O在△ABC的左側(cè),OC=8cm。
(1)當(dāng)t =(s)時(shí),⊙O與AC所在直線第一次相切,點(diǎn) C 到直線 AB 的距離為;
(2)當(dāng) t為何值時(shí),直線 AB 與半圓O所在的圓相切;
(3)當(dāng)△ABC的一邊所在直線與圓O相切時(shí),若⊙O與△ABC有重疊部分,求重疊部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為打造書香校園,計(jì)劃購(gòu)進(jìn)甲、乙兩種規(guī)格的書柜放置新購(gòu)進(jìn)的圖書,調(diào)查發(fā)現(xiàn),若購(gòu)買一個(gè)乙種書柜比購(gòu)買一個(gè)甲種書柜貴60元,若購(gòu)買甲種書柜1個(gè)、乙種書柜2個(gè),共需資金660元.
(1)甲、乙兩種書柜每個(gè)的價(jià)格分別是多少元?
(2)若該校計(jì)劃購(gòu)進(jìn)這兩種規(guī)格的書柜共20個(gè),其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請(qǐng)問學(xué)校有哪幾種購(gòu)買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E.F分別在AB、CD上,AE=CF,連接AF,BF,DE,CE,分別交于H、G.
求證:(1)四邊形AECF是平行四邊形。(2)EF與GH互相平分。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)某調(diào)查小組采用簡(jiǎn)單隨機(jī)抽樣方法,對(duì)某市部分中小學(xué)生一天中陽(yáng)光體育運(yùn)動(dòng)時(shí)間進(jìn)行了抽樣調(diào)查,并把所得數(shù)據(jù)整理后繪制成如下的統(tǒng)計(jì)圖:
(1)該調(diào)查小組抽取的樣本容量是多少?
(2)求樣本學(xué)生中陽(yáng)光體育運(yùn)動(dòng)時(shí)間為1.5小時(shí)的人數(shù),并補(bǔ)全占頻數(shù)分布直方圖;
(3)請(qǐng)估計(jì)該市中小學(xué)生一天中陽(yáng)光體育運(yùn)動(dòng)的平均時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)認(rèn)真觀察圖形,解答下列問題:
(1)根據(jù)圖中條件,試用兩種不同方法表示兩個(gè)陰影圖形的面積的和.
方法1: ;
方法2: .
(2)從中你能發(fā)現(xiàn)什么結(jié)論,請(qǐng)用等式表示出來(lái): ;
(3)利用(2)中結(jié)論解決下面的問題:若,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小亮家與姥姥家相距24km,小亮8:00從家出發(fā),騎自行車去姥姥家媽媽8:30從家出發(fā),乘車沿相同路線去姥姥家在同一直角坐標(biāo)系中,小亮和媽媽的行進(jìn)路程與北京時(shí)間的函數(shù)圖象如圖所示,根據(jù)圖象得到如下結(jié)論,其中錯(cuò)誤的是
A. 9:00媽媽追上小亮B. 媽媽比小亮提前到達(dá)姥姥家
C. 小亮騎自行車的平均速度是D. 媽媽在距家13km處追上小亮
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com