【題目】如圖1,在平面直角坐標(biāo)系中,拋物線(xiàn)y=-x2+bx+c經(jīng)過(guò)點(diǎn)A(-5,0)和點(diǎn)B(1,0).
(1)求拋物線(xiàn)的解析式及頂點(diǎn)D的坐標(biāo);
(2)點(diǎn)P是拋物線(xiàn)上A,D之間的一點(diǎn),過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E,PG⊥y軸,交拋物線(xiàn)于點(diǎn)G.過(guò)點(diǎn)G作GF⊥x軸于點(diǎn)F.當(dāng)矩形PEFG的周長(zhǎng)最大時(shí),求點(diǎn)P的橫坐標(biāo);
(3)如圖2,連接AD,BD,點(diǎn)M在線(xiàn)段AB上(不與A,B重合),作∠DMN=∠DBA,MN交線(xiàn)段AD于點(diǎn)N,是否存在這樣的點(diǎn)M,使得△DMN為等腰三角形?若存在,求出AN的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=-x2-x+;D(-2,4);(2)點(diǎn)P的橫坐標(biāo)為-;(3)存在,AN的長(zhǎng)為1或.
【解析】
(1) 根據(jù)拋物線(xiàn)y=-x2+bx+c經(jīng)過(guò)點(diǎn)A(-5,0)和點(diǎn)B(1,0),用待定系數(shù)法即可得到答案;
(2)假設(shè)P的坐標(biāo)為(m,-m2-m+),則可得到PE=-m2-m+,PG=2(-2-m)=-4-2m,再結(jié)合矩形周長(zhǎng),即可算出答案;
(3) 分三種情況MN=DM、NM=DN、DN=DM,分別討論即可得到答案.
解:(1)拋物線(xiàn)的解析式為:y=- (x+5)(x-1) =-x2-x+.
配方得:y=-(x+2)2+4 ,
∴頂點(diǎn)D的坐標(biāo)為(-2,4).
(2)設(shè)點(diǎn)P的坐標(biāo)為(m,-m2-m+),
則PE=-m2-m+,PG=2(-2-m)=-4-2m.
∴矩形PEFG的周長(zhǎng)=2(PE+PG)=2(-m2-m+-4-2m)
=-(m+)2+,
∵-<0,
∴當(dāng)m=-時(shí),矩形PEFG的周長(zhǎng)最大,此時(shí),點(diǎn)P的橫坐標(biāo)為-.
(3)存在.∵AD=BD,
∴∠DAB=∠DBA.
∵∠AMN+∠DMN=∠MDB+∠DBA,
又∵∠DMN=∠DBA,
∴∠AMN=∠MDB,
∴△AMN∽△BDM,
∴==,
易求得:AB=6,AD=DB=5.
△DMN為等腰三角形有三種可能:
①當(dāng)MN=DM時(shí),則△AMN≌△BDM,
∴AM=BD=5,
∴AN=MB=1;
②當(dāng)DN=MN時(shí),則∠ADM=∠DMN=∠DBA,
又∵∠DAM=∠BAD,
∴△DAM∽△BAD,
∴=,
∴AD2=AM·BA.
∴AM=,BM=6-=,
∵=,
∴AN==××=.
③DN=DM不成立.
∵∠DNM>∠DAB, 而∠DAB=∠DMN,
∴∠DNM>∠DMN,
∴DN≠DM.
綜上所述,存在點(diǎn)M滿(mǎn)足要求,此時(shí)AN的長(zhǎng)為1或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,反比例函數(shù)(x>0)的圖象經(jīng)過(guò)點(diǎn)A(,1),射線(xiàn)AB與反比例函數(shù)圖象交于另一點(diǎn)B(1,a),射線(xiàn)AC與y軸交于點(diǎn)C,∠BAC=75°,AD⊥y軸,垂足為D.
(1)求k的值;
(2)求tan∠DAC的值及直線(xiàn)AC的解析式;
(3)如圖2,M是線(xiàn)段AC上方反比例函數(shù)圖象上一動(dòng)點(diǎn),過(guò)M作直線(xiàn)l⊥x軸,與AC相交于點(diǎn)N,連接CM,求△CMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校“心靈信箱”的設(shè)立,為師、生之間的溝通開(kāi)設(shè)了一個(gè)書(shū)面交流的渠道.為了解九年級(jí)學(xué)生對(duì)“心靈信箱”開(kāi)通兩年來(lái)的使用情況,某課題組對(duì)該校九年級(jí)全體學(xué)生進(jìn)行了一次問(wèn)卷調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.
兩年來(lái),你通過(guò)“心靈信箱”給老師總共投遞過(guò)幾封信? |
A.沒(méi)投過(guò) B.一封 C.兩封 D.三封或以上 |
根據(jù)以上圖表,解答下列問(wèn)題:
(1)該校九年級(jí)學(xué)生共有____人;
(2)學(xué)生調(diào)查結(jié)果扇形統(tǒng)計(jì)圖中,扇形的圓心角度數(shù)是______;
(3)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;
(4)根據(jù)調(diào)查結(jié)果可以推斷:兩年來(lái),該校九年級(jí)學(xué)生通過(guò)“心靈信箱”投遞出信件總數(shù)至少有_____封.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知m,n是方程x2-6x+5=0的兩個(gè)實(shí)數(shù)根,且m<n,拋物線(xiàn)
y=-x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(m,0)、B(0,n).
(1)求這個(gè)拋物線(xiàn)的解析式;
(2)設(shè)(1)中拋物線(xiàn)與x軸的另一交點(diǎn)為C,拋物線(xiàn)的頂點(diǎn)為D,試求出點(diǎn)C、D的坐標(biāo)和△BCD的面積;
(3)P是線(xiàn)段OC上的一點(diǎn),過(guò)點(diǎn)P作PH⊥x軸,與拋物線(xiàn)交于H點(diǎn),若直線(xiàn)BC把△PCH分成面積之比為2:3的兩部分,請(qǐng)求出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AB=4,BC=6.若不改變矩形ABCD的形狀和大小,當(dāng)矩形頂點(diǎn)A在x軸的正半軸上左右移動(dòng)時(shí),矩形的另一個(gè)頂點(diǎn)D始終在y軸的正半軸上隨之上下移動(dòng).
(1)當(dāng)∠OAD=30°時(shí),求點(diǎn)C的坐標(biāo);
(2)設(shè)AD的中點(diǎn)為M,連接OM、MC,當(dāng)四邊形OMCD的面積為時(shí),求OA的長(zhǎng);
(3)當(dāng)點(diǎn)A移動(dòng)到某一位置時(shí),點(diǎn)C到點(diǎn)O的距離有最大值,請(qǐng)直接寫(xiě)出最大值,并求此時(shí)cos∠OAD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,BC=AC,∠ACB=90°,將△ABC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0≤α≤90°),得到△EFC,EF與AB、AC相交于點(diǎn)D、H,FC與AB相交于點(diǎn)G、AC相交于點(diǎn)D、H,FC與AB相較于點(diǎn)G.
(1)求證:△GBC≌△HEC;
(2)在旋轉(zhuǎn)過(guò)程中,當(dāng)α是多少度時(shí)四邊形BCED可以是某種特殊的平行四邊形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將一塊等腰直角三角板放在第二象限,斜靠在兩坐標(biāo)軸上,點(diǎn)坐標(biāo)為,點(diǎn)的坐標(biāo)為,一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)B、C,反比例函數(shù)的圖象也經(jīng)過(guò)點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)觀察圖象直接寫(xiě)出圖象在第二象限時(shí),的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料:
如果函數(shù)滿(mǎn)足:對(duì)于自變量的取值范圍內(nèi)的任意,,
(1)若,都有,則稱(chēng)是增函數(shù);
(2)若,都有,則稱(chēng)是減函數(shù).
例題:證明函數(shù)是減函數(shù).
證明:設(shè),
.
∵,∴,.∴.即.
∴.∴函數(shù)()是減函數(shù).
根據(jù)以上材料,解答下面的問(wèn)題:
己知函數(shù)(),
(1)計(jì)算:_______,_______;
(2)猜想:函數(shù)()是_______函數(shù)(填“增”或“減”);
(3)請(qǐng)仿照例題證明你的猜想.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com