【題目】定義:如果兩條線段將一個三角形分成3個小等腰三角形,我們把這兩條線段叫做這個三角形的三分線,在△ABC中,∠B=30°,AD和 DE是△ABC的三分線,點D在 BC 邊上,點E在 AC邊上,且AD=BD,DE=CE,請寫出∠C所有可能的度數(shù)________.
【答案】20°或 40°
【解析】
用量角器,直尺標(biāo)準(zhǔn)作 30°角,而后確定一邊為 BA,一邊為 BC,根據(jù)題意可以先固定 BA 的長,而后可確定 D 點,再標(biāo)準(zhǔn)作圖實驗﹣﹣分別考慮 AD 為等腰三角形的腰或者底邊,兼顧 A、E、C 在同一直線上,易得 2 種三角形 ABC.根據(jù)圖形易得 x 的值.
解:設(shè)∠C=x°.
①當(dāng) AD=AE 時,
∵2x+x=30+30,
∴x=20.
②當(dāng) AD=DE 時,
∵30+30+2x+x=180,
∴x=40.
所以∠C 的度數(shù)是 20°或 40°.
故答案 20°或 40°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市有一塊長為(2a+b)米,寬為(a+b)米的長方形地塊,規(guī)劃部門計劃將陰影部分進(jìn)行綠化,中間將修建一座雕像.
(1)試用含a,b的代數(shù)式表示綠化的面積是多少平方米?
(2)若a=3,b=2,請求出綠化面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(﹣2,0),B(0,1).
(1)點C的坐標(biāo)是;
(2)將△ABC沿x軸正方向平移得到△A′B′C′,且B,C兩點的對應(yīng)點B′,C′恰好落在反比例函數(shù)y= 的圖象上,求該反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有大小兩種貨車,2輛大貨車與3輛小貨車一次可以運貨15.5t;5輛大貨車與6輛小貨車一次可以運貨35t
(1)每輛大貨車和每輛小貨車一次各可以運貨多少?
(2)現(xiàn)在租用這兩種火車共10輛,要求一次運輸貨物不低于30t,則大貨車至少租幾輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y= x與雙曲線y= 的交點A的橫坐標(biāo)為2
(1)求k的值
(2)如圖,過點P(m,3)(m>0)作x軸的垂線交雙曲線y= (x>0)于點M,交直線OA于點N
①連接OM,當(dāng)OA=OM時,直接寫出PN﹣PM的值
②試比較PM與PN的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣3,0),點 B是 y軸正半軸上一動點,點C、D在 x正半軸上.
(1)如圖,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的兩條角平分線,且BD、CE交于點F,直接寫出CF的長_____.
(2)如圖,△ABD是等邊三角形,以線段BC為邊在第一象限內(nèi)作等邊△BCQ,連接 QD并延長,交 y軸于點 P,當(dāng)點 C運動到什么位置時,滿足 PD=DC?請求出點C的坐標(biāo);
(3)如圖,以AB為邊在AB的下方作等邊△ABP,點B在 y軸上運動時,求OP的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是直線AB上任一點,射線OD和射線OE分別平分∠AOC和∠BOC.
(1)填空:與∠AOE互補的角有 ;
(2)若∠COD=30°,求∠DOE的度數(shù);
(3)當(dāng)∠AOD=α°時,請直接寫出∠DOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把四張大小相同的長方形卡片(如圖1)按圖2、圖3兩種方式放在一個底面為長方形(長比寬多7cm)的盒底上,底面未被卡片覆蓋的部分用陰影表示,若記圖2中陰影部分的周長為C1,圖3中陰影部分的周長為C2,則C1比C2大_________ cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com