【題目】如圖①,已知AB是⊙O的直徑,點(diǎn)D是線段AB延長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),直線DF垂直于射線AB于點(diǎn)D,當(dāng)直線DF繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)時(shí),與⊙O交于點(diǎn)C,且運(yùn)動(dòng)過(guò)程中,保持CD=OA
(1)當(dāng)直線DF與⊙O相切于點(diǎn)C時(shí),求旋轉(zhuǎn)角的度數(shù);
(2)當(dāng)直線DF與半圓O相交于點(diǎn)C時(shí)(如圖②),設(shè)另一交點(diǎn)為E,連接AE,OC,若AE∥OC.
①AE與OD的大小有什么關(guān)系?說(shuō)明理由.
②求此時(shí)旋轉(zhuǎn)角的度數(shù).
【答案】(1)45°;(2)①結(jié)論:AE=OD.②∠CDF=54°
【解析】
(1)連接OC,因?yàn)?/span>CD是⊙O的切線,得出∠OCD=90°,由OC=CD,得出∠ODC=∠COD=45°即可解決問(wèn)題;
(2)連接OE,①證明△AOE≌△OCD,即可得AE=OD;
②利用等腰三角形及平行線的性質(zhì),根據(jù)三角形內(nèi)角和定理構(gòu)建方程可求得∠ODC的度數(shù),即可解決問(wèn)題;
(1)如圖①,連接OC.
∵OC=OA,CD=OA,
∴OC=CD,
∴∠ODC=∠COD,
∵CD是⊙O的切線,
∴∠OCD=90°,
∴∠ODC=45°;
∴旋轉(zhuǎn)角∠CDF=90°﹣45°=45°.
(2)如圖②,連接OE.
∵CD=OA,
∴CD=OC=OE=OA,
∴∠1=∠2,∠3=∠4.
∵AE∥OC,
∴∠2=∠3.
設(shè)∠ODC=∠1=x,則∠2=∠3=∠4=x.
∴∠AOE=∠OCD=180°﹣2x.
①結(jié)論:AE=OD.理由如下:
在△AOE與△OCD中,
,
∴△AOE≌△OCD(SAS),
∴AE=OD.
②∵∠6=∠1+∠2=2x.OE=OC,
∴∠5=∠6=2x.
∵AE∥OC,
∴∠4+∠5+∠6=180°,即:x+2x+2x=180°,
∴x=36°.
∴∠ODC=36°,
∴旋轉(zhuǎn)角∠CDF=54°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面直角坐標(biāo)系中,反比例函數(shù)y(b≠0)與二次函數(shù)y=ax2+bx(a≠0)的圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長(zhǎng);
(2)如果把△CAE的周長(zhǎng)記作C△CAE,△BAF的周長(zhǎng)記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域;
(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】交通安全是社會(huì)關(guān)注的熱點(diǎn)問(wèn)題,安全隱患主要是超速和超載.某中學(xué)九年級(jí)數(shù)學(xué)活動(dòng)小組的同學(xué)進(jìn)行了測(cè)試汽車速度的實(shí)驗(yàn).如圖,先在筆直的公路1旁選取一點(diǎn)P,在公路1上確定點(diǎn)O、B,使得,米,.這時(shí),一輛轎車在公路1上由B向A勻速駛來(lái),測(cè)得此車從B處行駛到A處所用的時(shí)間為3秒,并測(cè)得此路段限速每小時(shí)80千米,試判斷此車是否超速?請(qǐng)說(shuō)明理由參考數(shù)據(jù):,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y,的對(duì)應(yīng)值如下表:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | -4 | -4 | 0 | 8 | … |
(1)根據(jù)上表填空:
①拋物線與x軸的交點(diǎn)坐標(biāo)是_________和_________;
②拋物線經(jīng)過(guò)點(diǎn)(-3,_________);
(2)試確定拋物線y=ax2+bx+c的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).
(1)請(qǐng)?jiān)趫D中,畫(huà)出△ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來(lái)的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè),畫(huà)出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=x的圖像如圖所示,它與二次函數(shù)y=ax2+2ax+c的圖像交于A、B兩點(diǎn)(其中點(diǎn)A在點(diǎn)B的左側(cè)),與這個(gè)二次函數(shù)圖像的對(duì)稱軸交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)設(shè)二次函數(shù)圖像的頂點(diǎn)為D.若點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,且△ACD的面積等于,求此二次函數(shù)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖,小東在教學(xué)樓距地面9米高的窗口C處,測(cè)得正前方旗桿頂部A點(diǎn)的仰角為37°,旗桿底部B點(diǎn)的俯角為45°,升旗時(shí),國(guó)旗上端懸掛在距地面2.25米處,若國(guó)旗隨國(guó)歌聲冉冉升起,并在國(guó)歌播放45秒結(jié)束時(shí)到達(dá)旗桿頂端,則國(guó)旗應(yīng)以多少米/秒的速度勻速上升?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店以每件25元的價(jià)格購(gòu)進(jìn)一批商品,該商品可以自行定價(jià),若每件商品售價(jià)a元,則可賣出(400﹣10a)件,但物價(jià)局限定每件商品的利潤(rùn)不得超過(guò)進(jìn)價(jià)的30%,商店計(jì)劃要盈利500元,每件商品應(yīng)定價(jià)多少元?需要進(jìn)貨多少件?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com