【題目】在Rt△ABC中,∠C=90°,AC=2,BC=4,點(diǎn)D、E分別是邊BC、AB的中點(diǎn),將△BDE繞著點(diǎn)B旋轉(zhuǎn),點(diǎn)D、E旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)分別為點(diǎn)D′、E′,當(dāng)直線D′E′經(jīng)過點(diǎn)A時(shí),線段CD′的長(zhǎng)為_____.
【答案】或
【解析】
分兩種情況:①點(diǎn)A在ED的延長(zhǎng)線上時(shí);②點(diǎn)A在線段DE的延長(zhǎng)線上時(shí);然后分類討論,求出線段BD的長(zhǎng)各是多少即可.
解:如圖1,當(dāng)點(diǎn)A在ED的延長(zhǎng)線上時(shí),
∵∠C=90°,AC=2,BC=4,
∴AB=,
∵點(diǎn)D、E分別是邊BC、AB的中點(diǎn),
∴DE∥AC,DE=AC=1, BD=BC=2,
∴∠EDB=∠ACB=90°
∵將△BDE繞著點(diǎn)B旋轉(zhuǎn),
∴∠BD′E′=∠BDE=90°,D′E′=DE=1,BD=BD=2,
∵在Rt△ABC和Rt△BAD′中,
D′B=AC=2,AB=BA,
即,
∵Rt△ABC≌Rt△BAD′(HL),
∴AD′=BC,且AC=D′B,
∴四邊形ACBD′是平行四邊形,且∠ACB=90°,
∴四邊形ACBD′是矩形,
∴CD=AB=2;
如圖2,當(dāng)點(diǎn)A在線段D′E′的延長(zhǎng)線上時(shí),
∵∠AD′B=90°,
∴AD′=,
∴AE=AD′-DE′=3,
∵將△BDE繞著點(diǎn)B旋轉(zhuǎn),
∴∠ABC=∠EBD,
∵,
∴△ABE∽△BCD′
∴,
∴,
,
故答案為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠A=90°,AB=4,AC=3,D為AB邊上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)A、B不重合),聯(lián)結(jié)CD,過點(diǎn)D作DE⊥DC交邊BC于點(diǎn)E.
(1)如圖,當(dāng)ED=EB時(shí),求AD的長(zhǎng);
(2)設(shè)AD=x,BE=y,求y關(guān)于x的函數(shù)解析式并寫出函數(shù)定義域;
(3)把△BCD沿直線CD翻折得△CDB',聯(lián)結(jié)AB',當(dāng)△CAB'是等腰三角形時(shí),直接寫出AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過兩點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)為拋物線上一點(diǎn),若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+mx+n交x軸于點(diǎn)A(﹣2,0)和點(diǎn)B,交y軸于點(diǎn)C(0,2).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)M在拋物線上,且S△AOM=2S△BOC,求點(diǎn)M的坐標(biāo);
(3)如圖2,設(shè)點(diǎn)N是線段AC上的一動(dòng)點(diǎn),作DN⊥x軸,交拋物線于點(diǎn)D,求線段DN長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△OA1B1是等邊三角形,點(diǎn)B1的坐標(biāo)是(2,0),反比例函數(shù)y=的圖象經(jīng)過點(diǎn)A1.
(1)求反比例函數(shù)的解析式.
(2)如圖,以B1為頂點(diǎn)作等邊三角形B1A2B2,使點(diǎn)B2在x軸上,點(diǎn)A2在反比例函數(shù)y=的圖象上.若要使點(diǎn)B2在反比例函數(shù)y=的圖象上,需將△B1A2B2向上平移多少個(gè)單位長(zhǎng)度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加快5G網(wǎng)絡(luò)建設(shè),某移動(dòng)通信公司在一個(gè)坡度為2:1的山腰上建了一座5G信號(hào)通信塔AB,在距山腳C處水平距離39米的點(diǎn)D處測(cè)得通信塔底B處的仰角是35°,測(cè)得通信塔頂A處的仰角是49°,(參考數(shù)據(jù):sin35°≈0.57,tan35°≈0.70,sin49°≈0.75,tan49°≈1.15),則通信塔AB的高度約為( )
A.27米B.31米C.48米D.52米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠MON=120°,點(diǎn)A,B分別在ON,OM邊上,且OA=OB,點(diǎn)C在線段OB上(不與點(diǎn)O,B重合),連接CA.將射線CA繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)120°得到射線CA′,將射線BO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)150°與射線CA′交于點(diǎn)D.
(1)根據(jù)題意補(bǔ)全圖1;
(2)求證:
①∠OAC=∠DCB;
②CD=CA(提示:可以在OA上截取OE=OC,連接CE);
(3)點(diǎn)H在線段AO的延長(zhǎng)線上,當(dāng)線段OH,OC,OA滿足什么等量關(guān)系時(shí),對(duì)于任意的點(diǎn)C都有∠DCH=2∠DAH,寫出你的猜想并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點(diǎn)D.
(1)求線段AD的長(zhǎng)度;
(2)點(diǎn)E是線段AC上的一點(diǎn),試問:當(dāng)點(diǎn)E在什么位置時(shí),直線ED與⊙O相切?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com