【題目】已知甲同學手中藏有三張分別標有數(shù)字的卡片,乙同學手中藏有三張分別標有數(shù)字13,2的卡片,卡片外形相同.現(xiàn)從甲乙兩人手中各任取一張卡片,并將它們的數(shù)字分別記為.

1請你用樹形圖或列表法列出所有可能的結果.

2現(xiàn)制定這樣一個游戲規(guī)則:若所選出的能使得有兩個不相等的實數(shù)根,則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則公平嗎?請你用概率知識解釋

【答案】

1

或列表:

a b

1

2

3

(,1)

,2

,3

,1

,2

(,3)

1

1,1

1,2

13

4分)

2】要使方程有兩個不相等的實根,即=,滿足條件的有5種可能:

甲獲勝的概率為,乙獲勝的概率為···································3分)

即此游戲不公平3分)

【解析】(1)首先根據(jù)題意畫出樹狀圖,然后根據(jù)樹狀圖即可求得所有等可能的結果;

(2)利用一元二次方程根的判別式,即可判定各種情況下根的情況,然后利用概率公式求解即可求得甲、乙獲勝的概率,比較概率大小,即可確定這樣的游戲規(guī)是否公平.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】2014年巴西世界杯足球賽前夕,某體育用品店購進一批單價為40元的球服,如果按單價60元銷售,那么一個月內可售出240,根據(jù)銷售經(jīng)驗,提高銷售單價會導致銷售量的減少,即銷售單價每提高5,銷售量相應減少20,設銷售單價為x(x60)元,銷售量為y.

(1)求出yx的函數(shù)關系式;

(2)當銷售單價為多少元時,且銷售額為14000?

(3)當銷售單價為多少元時,才能在一個月內獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】昆明市教育局為了了解初三年級近期在家每天的自學情況,隨機對某中學部分初三學生進行問卷調查,并將調查結果分為AB,C,D四個等級,設學習時間為t(小時),,根據(jù)調查結果繪制了如圖所示的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中信息解答下列問題:

1)本次抽樣調查共抽取了多少名學生?并將條形統(tǒng)計圖補充完整;

2)表示B等級的扇形圓心角α的度數(shù)是多少?

3)若該中學初三年級共有800名學生,請你估計學習時間為AB等級的學生共有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店準備購進一批電冰箱和空調,每臺電冰箱的進價比每臺空調的進價多400元,商店用8000元購進電冰箱的數(shù)量與用6400元購進空調的數(shù)量相等.

(1)求每臺電冰箱與空調的進價分別是多少?

(2)已知電冰箱的銷售價為每臺2100元,空調的銷售價為每臺1750元.若商店準備購進這兩種家電共100臺,其中購進電冰箱x臺(33x40),那么該商店要獲得最大利潤應如何進貨?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】市化工材料經(jīng)銷公司購進一種化工原料若干千克,價格為每千克30元.物價部門規(guī)定其銷售單價不高于每千克60元,不低于每千克30元.經(jīng)市場調查發(fā)現(xiàn):日銷售量(千克)是銷售單價(元)的一次函數(shù),且當=40時,=120;=50時,=100.在銷售過程中,每天還要支付其他費用500元.

(1)求出的函數(shù)關系式,并寫出自變量的取值范圍.

(2)求該公司銷售該原料日獲利(元)與銷售單價(元)之間的函數(shù)關系式.

(3)當銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來,霧霾天氣給人們的生活帶來很大影響,空氣質量問題倍受人們關注,某學校計劃在教室內安裝空氣凈化裝置,需購進A、B兩種設備,已知:購買1臺A種設備和2臺B種設備需要3.5萬元;購買2臺A種設備和1臺B種設備需要2.5萬元.

(1)求每臺A種、B種設備各多少萬元?

(2)根據(jù)學校實際,需購進A種和B種設備共30臺,總費用不超過30萬元,請你通過計算,求至少購買A種設備多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1是安裝在傾斜屋頂上的熱水器,圖2是安裝熱水器的側面示意圖.已知屋面AE的傾斜角∠EAD22°,長為2米的真空管AB與水平線AD的夾角為37°,安裝熱水器的鐵架豎直管CE的長度為0.5米.

(1)真空管上端B到水平線AD的距離.

(2)求安裝熱水器的鐵架水平橫管BC的長度(結果精確到0.1)

參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈,sin22°≈,cos22°≈tan22°≈

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+x+ca0)與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知點A的坐標為(﹣1,0),點C的坐標為(0,2).

1)求拋物線的解析式;

2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;

3)點E是線段BC上的一個動點,過點Ex軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把平面內一條數(shù)軸x繞點O逆時針旋轉角θ0°<θ90°)得到另一條數(shù)軸y,x軸和y軸構成一個平面斜坐標系.規(guī)定:已知點P是平面斜坐標系中任意一點,過點Py軸的平行線交x軸于點A,過點Px軸的平行線交y軸于點B,若點Ax軸上對應的實數(shù)為a,點By軸上對應的實數(shù)為b,則稱有序實數(shù)對(ab)為點P的斜坐標.在平面斜坐標系中,若θ45°,點P的斜坐標為(1,2),點G的斜坐標為(7,﹣2),連接PG,則線段PG的長度是_____

查看答案和解析>>

同步練習冊答案