【題目】某校八年級數(shù)學實踐能力考試選擇項目中,選擇數(shù)據(jù)收集項目和數(shù)據(jù)分析項目的學生比較多。為了解學生數(shù)據(jù)收集和數(shù)據(jù)分析的水平情況,進行了抽樣調(diào)查,過程如下,請補充完整.收集數(shù)據(jù):從選擇數(shù)據(jù)收集和數(shù)據(jù)分析的學生中各隨機抽取16人,進行了體育測試,測試成績(十分制)如下:

數(shù)據(jù)收集

10

9.5

9.5

10

8

9

9.5

9

7

10

4

5.5

10

7.9

9.5

10

數(shù)據(jù)分析

9.5

9

8.5

8.5

10

9.5

10

8

6

9.5

10

9.5

9

8.5

9.5

6

整理,描述數(shù)據(jù):按如下分數(shù)段整理,描述這兩組樣本數(shù)據(jù):

10

數(shù)據(jù)收集

1

1

3

6

5

數(shù)據(jù)分析

(說明:成績8.5分及以上為優(yōu)秀,6分及以上為合格,6分以下為不合格.

分析數(shù)據(jù):兩組樣本數(shù)據(jù)的平均數(shù),中位數(shù),眾數(shù)如下表所示:

項目

平均數(shù)

中位數(shù)

眾數(shù)

數(shù)據(jù)收集

8.75

9.5

10

數(shù)據(jù)分析

8.81

9.25

9.5

得出結論:

1)如果全校有480人選擇數(shù)據(jù)收集項目,達到優(yōu)秀的人數(shù)約為________人;

2)初二年級的井航和凱舟看到上面數(shù)據(jù)后,井航說:數(shù)據(jù)分析項目整體水平較高.凱舟說:數(shù)據(jù)收集項目整體水平較高.你同意________的看法,理由為_______________________.(至少從兩個不同的角度說明推斷的合理性)

【答案】1330;(2)凱舟,數(shù)據(jù)收集項目的中位數(shù)較大,眾數(shù)也較大,因此數(shù)據(jù)收集項目的整體水平較高.

【解析】

1)樣本估計總體,樣本中優(yōu)秀人數(shù)占調(diào)查人數(shù)的,估計480人的得優(yōu)秀;

2)可從中位數(shù)、眾數(shù)的角度進行分析得出答案.

解:整理的表格如下:

1480×=330人,

故答案為:330

2)根據(jù)以下表格可知:

根據(jù)整理后的數(shù)據(jù),我同意凱舟的說法,數(shù)據(jù)收集項目的中位數(shù)較大,眾數(shù)也較大,因此數(shù)據(jù)收集項目的整體水平較高.

故答案為:凱舟;數(shù)據(jù)收集項目的中位數(shù)較大,眾數(shù)也較大,因此數(shù)據(jù)收集項目的整體水平較高.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AB=AC,∠A=36°,AB的垂直平分線交ACD,則下列結論:①∠C=72°;②BD是∠ABC的平分線;③△ABD是等腰三角形;④△BCD是等腰三角形,其中正確的有____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從泰州乘“K”字頭列車A、“T”字頭列車B都可直達南京,已知A車的平均速度為80 km/h,B車的平均速度為A車的1.5倍,且行完全程B車所需時間比A車少40分鐘.

(1)求泰州至南京的鐵路里程;

(2)若兩車以各自的平均速度分別從泰州、南京同時相向而行,問經(jīng)過多少時間兩車相距40 km?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線兩點.

求拋物線的解析式.

為拋物線對稱軸與x軸的交點,N為對稱軸上一點,若,求MAN的距離.

在拋物線的對稱軸上是否存在點P,使為等腰三角形?若存在,請直接寫出滿足條件的點

P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:若線段上的一個點把這條線段分成12的兩條線段,則稱這個點是這條線段的三等分點.如圖1,點C在線段AB上,且ACCB12,則點C是線段AB的一個三等分點,顯然,一條線段的三等分點有兩個.

1)已知:如圖2,DE15cm,點PDE的三等分點,求DP的長.

2)已知,線段AB15cm,如圖3,點P從點A出發(fā)以每秒1cm的速度在射線AB上向點B方向運動;點Q從點B出發(fā),先向點A方向運動,當與點P重合后立馬改變方向與點P同向而行且速度始終為每秒2cm,設運動時間為t秒.

若點PQ同時出發(fā),且當點P與點Q重合時,求t的值.

若點PQ同時出發(fā),且當點P是線段AQ的三等分點時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點E,過點E作BE的垂線交AB于點F,⊙O是△BEF的外接圓.

(1)求證:AC是⊙O的切線.

(2)過點E作EH⊥AB于點H,求證:CD=HF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】由于(﹣1n,所以我們通常把(﹣1n稱為符號系數(shù).

1)觀察下列單項式:﹣,…按此規(guī)律,第5個單項式是   ,第n個單項式是   

2的值為   ;

3)你根據(jù)(2)寫出一個當n為偶數(shù)時值為2,當n為奇數(shù)時值為0的式子   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學興趣小組活動中,小明將邊長為2的正方形與邊長為的正方形按如圖1方式放置,在同一條直線上,在同一條直線上.

1)請你猜想之間的數(shù)量與位置關系,并加以證明;

2)在圖2中,若將正方形繞點逆時針旋轉(zhuǎn),當點恰好落在線段上時,求出的長;

3)在圖3中,若將正方形繞點繼續(xù)逆時針旋轉(zhuǎn),且線段與線段相交于點,寫出面積之和的最大值,并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABDE,B=60°,AEBC,垂足為點E.

(1)求∠AED的度數(shù);

(2)當∠EDC滿足什么條件時,AEDC,證明你的結論.

查看答案和解析>>

同步練習冊答案