【題目】如圖,已知AB∥DE,∠B=60°,AE⊥BC,垂足為點E.
(1)求∠AED的度數(shù);
(2)當(dāng)∠EDC滿足什么條件時,AE∥DC,證明你的結(jié)論.
【答案】(1)30°;(2)當(dāng)∠EDC=30°時, AE∥DC,理由參見解析.
【解析】試題分析:(1)由已知AE⊥BC,可知∠AEC=90°,根據(jù)AB∥DE,∠B=60°,得出∠DEC=∠B= 60°(兩直線平行,同位角相等),這樣∠AED就求出來了;(2)此題是平行線的判定,上題已求出∠AED=30°,利用內(nèi)錯角相等,兩直線平行,只要∠EDC=30°就可以判定AE∥DC.
試題解析:(1)∵ AB∥DE, ∴ ∠DEC=∠B= 60°(兩直線平行,同位角相等),又∵ BC⊥AE,∴ ∠AEC=90°(垂直定義),所以 ∠AED=90°-60°=30°; (2)由⑴得∠AED=30°,根據(jù)內(nèi)錯角相等,兩直線平行,∴ ∠AED=∠EDC時 AE∥DC,即當(dāng)∠EDC=30°時, AE∥DC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級數(shù)學(xué)實踐能力考試選擇項目中,選擇數(shù)據(jù)收集項目和數(shù)據(jù)分析項目的學(xué)生比較多。為了解學(xué)生數(shù)據(jù)收集和數(shù)據(jù)分析的水平情況,進(jìn)行了抽樣調(diào)查,過程如下,請補充完整.收集數(shù)據(jù):從選擇數(shù)據(jù)收集和數(shù)據(jù)分析的學(xué)生中各隨機抽取16人,進(jìn)行了體育測試,測試成績(十分制)如下:
數(shù)據(jù)收集 | 10 | 9.5 | 9.5 | 10 | 8 | 9 | 9.5 | 9 | 7 | 10 | 4 | 5.5 | 10 | 7.9 | 9.5 | 10 |
數(shù)據(jù)分析 | 9.5 | 9 | 8.5 | 8.5 | 10 | 9.5 | 10 | 8 | 6 | 9.5 | 10 | 9.5 | 9 | 8.5 | 9.5 | 6 |
整理,描述數(shù)據(jù):按如下分?jǐn)?shù)段整理,描述這兩組樣本數(shù)據(jù):
10 | |||||
數(shù)據(jù)收集 | 1 | 1 | 3 | 6 | 5 |
數(shù)據(jù)分析 |
(說明:成績8.5分及以上為優(yōu)秀,6分及以上為合格,6分以下為不合格.)
分析數(shù)據(jù):兩組樣本數(shù)據(jù)的平均數(shù),中位數(shù),眾數(shù)如下表所示:
項目 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
數(shù)據(jù)收集 | 8.75 | 9.5 | 10 |
數(shù)據(jù)分析 | 8.81 | 9.25 | 9.5 |
得出結(jié)論:
(1)如果全校有480人選擇數(shù)據(jù)收集項目,達(dá)到優(yōu)秀的人數(shù)約為________人;
(2)初二年級的井航和凱舟看到上面數(shù)據(jù)后,井航說:數(shù)據(jù)分析項目整體水平較高.凱舟說:數(shù)據(jù)收集項目整體水平較高.你同意________的看法,理由為_______________________.(至少從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1, 在 中,,.點O是BC的中點,點D沿B→A→C方向從B運動到C.設(shè)點D經(jīng)過的路徑長為,圖1中某條線段的長為y,若表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則這條線段可能是圖1中的 ( )
圖1 圖2
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線上有、兩個觀測站,在的正東方向,(單位:)有一艘小船在點處,從測得小船在北偏西的方向,從測得小船在北偏東的方向.(結(jié)果保留根號)
(1)求點到海岸線的距離;
(2)小船從點處沿射線的方向航行一段時間后,到達(dá)點處,此時,從測得小船在北偏西的方向,求點與點之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(13),矩形中,、、,射線過點且與軸平行,點、分別是和軸正半軸上動點,滿足.
(1)①點的坐標(biāo)是 ;②= 度;③當(dāng)點與點重合時,點的坐標(biāo)為 ;
(2)設(shè)的中點為,與線段相交于點,連結(jié),如圖(13)乙所示,若為等腰三角形,求點的橫坐標(biāo);
(3)設(shè)點的橫坐標(biāo)為,且,與矩形的重疊部分的面積為,試求與的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在三角形ABC中,點E,F(xiàn)分別為線段AB,AC上任意兩點,EG交BC于點G,交AC的延長線于點H,∠1+∠AFE=180°.
(1)證明:BC∥EF;
(2)如圖②,若∠2=∠3,∠BEG=∠EDF,證明:DF平分∠AFE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐
(問題情境)
在綜合與實踐課上,同學(xué)們以“矩形的折疊”為主題展開數(shù)學(xué)活動,如圖1,在矩形紙片ABCD中,AB=4,BC=5,點E,F分別為邊AB,AD上的點,且DF=3。
(操作發(fā)現(xiàn))
(1)沿CE折疊紙片,B點恰好與F點重合,求AE的長;
(2)如圖2,延長EF交CD的延長線于點M,請判斷△CEM的形狀,并說明理由。
(深入思考)
(3)把圖2置于平面直角坐標(biāo)系中,如圖3,使D點與原點O重合,C點在x軸的負(fù)半軸上,將△CEM沿CE翻折,使點M落在點M′處.連接CM′,求點M′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點A,B,C是數(shù)軸上的三個點,其中AB=12,且A,B兩點表示的數(shù)互為相反數(shù).
(1)請在數(shù)軸上標(biāo)出原點O,并寫出點A表示的數(shù);
(2)如果點Q以每秒2個單位的速度從點B出發(fā)向左運動,那么經(jīng)過 秒時,點C恰好是BQ的中點;
(3)如果點P以每秒1個單位的速度從點A出發(fā)向右運動,那么經(jīng)過多少秒時PC=2PB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com