【題目】我們已經(jīng)知道,形如的無理數(shù)的化簡要借助平方差公式:

例如:

下面我們來看看完全平方公式在無理數(shù)化簡中的作用。

問題提出:該如何化簡?

建立模型:形如的化簡,只要我們找到兩個數(shù),使,這樣,,那么便有:,

問題解決:化簡

解:首先把化為,這里,,由于4+3=7,

即(,

模型應(yīng)用1

利用上述解決問題的方法化簡下列各式:

1;(2;

模型應(yīng)用2

3)在中,,,那么邊的長為多少?(結(jié)果化成最簡)。

【答案】1;(2;(3

【解析】

1)按照題目做法,令,即可求出結(jié)果;

2)先將化為,再按照(1)的做法計算即可.

3)利用勾股定理算出BC再化簡即可.

1)這里,由于,

所以;

2)首先把化為,這里,,由于,

,,

所以

3)在中,由勾股定理得,

所以,

所以,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種型號汽車油箱容量為40升,每行駛100千米耗油10.設(shè)一輛加滿油的該型號汽車行駛路程為x(千米),行駛過程中油箱內(nèi)剩余油量為y().

(1)yx之間的函數(shù)表達(dá)式;

(2)該輛汽車以80千米/時的速度從甲地出發(fā)開往距離甲地1050千米的B地,為了有效延長汽車使用壽命,廠家建議每次加油時,油箱內(nèi)剩余油量不低于油箱容量的,按此建議,求該輛汽車最多行駛多長時間就需再一次加油?此次加油后,剩余路程至少還需再加幾次油?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】上午8時,一條船從海島A出發(fā),以15n mile/h(海里/時,1n mile1852m)的速度向正北航行,10時到達(dá)海島B處,從AB望燈塔C,測得NAC42°,NBC84°.則從海島B到燈塔C的距離為( 。

A.45n mileB.30n mileC.20n mileD.15n mile

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道對稱補缺的思想是解決與軸對稱圖形有關(guān)的問題的一種重要的添加輔助線的策略,參考這種思想解決下列問題.

ABC中,DABC外一點.

(1)如圖1,若AC平分∠BAD,CEAB于點E,∠ B+ADC=180,求證:BC=CD;

(2)如圖2,若∠ACB=90°, AC=BCFAC上一點,ADBFBF延長線于點D,且BF是∠CBA的角平分線.求證:2AD=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提升學(xué)生的閱讀能力,開拓學(xué)生的視野,學(xué)校開展了為期一個月的陽光讀書活動.為了解同學(xué)們的閱讀情況,校學(xué)生會隨機抽取了一部分學(xué)生進(jìn)行調(diào)查,并將統(tǒng)計數(shù)據(jù)制成如下統(tǒng)計圖,其中A﹣﹣散文類,B﹣﹣傳記類,C﹣﹣小說類,D﹣﹣期刊類,E﹣﹣其他,請你根據(jù)統(tǒng)計圖解答以下問題:

(1)扇形統(tǒng)計圖中D部分所對應(yīng)扇形的圓心角為   度;請補全條形統(tǒng)計圖

(2)現(xiàn)從A中抽選1名女同學(xué);再從C中抽選3名同學(xué),其中恰好有1名男同學(xué).現(xiàn)準(zhǔn)備從抽選出來的這4名同學(xué)中隨機選出2名同學(xué)代表學(xué)校參加比賽,請利用畫樹狀圖或列表的方法求出選出的同學(xué)都是女同學(xué)的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,.

⑴已知線段AB的垂直平分線與BC邊交于點P,連結(jié)AP,求證:;

⑵以點B為圓心,線段AB的長為半徑畫弧,與BC邊交于點Q,連結(jié)AQ,若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BDABC的角平分線,且BD=BCEBD延長線上的一點,BE=BA,過EEFAB,F為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+BCD=180°;③AD=EF=EC;④AE=EC,其中正確的是________(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

在如圖所示的方格紙中,ABC的頂點都在小正方形的頂點上,以小正方形互相垂直的兩邊所在直線建立直角坐標(biāo)系.

1)作出ABC關(guān)于y軸對稱的A1B1C1,其中A,B,C分別和A1B1,C1對應(yīng);

2)平移ABC,使得A點在x軸上,B點在y軸上,平移后的三角形記為A2B2C2,作出平移后的A2B2C2,其中AB,C分別和A2,B2,C2對應(yīng);

3)填空:在(2)中,設(shè)原ABC的外心為MA2B2C2的外心為M,則MM2之間的距離為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩地相距20km.甲、乙兩人都由A地去B地,甲騎自行車,平均速度為10km/h;乙乘汽車,平均速度為40km/h,且比甲晚1.5h出發(fā).設(shè)甲的騎行時間為x(h)(0≤x≤2)

(1)根據(jù)題意,填寫下表:

時間x(h)

A地的距離

0.5

1.8

_____

甲與A地的距離(km)

5

  

20

乙與A地的距離(km)

0

12

  

(2)設(shè)甲,乙兩人與A地的距離為y1(km)和y2(km),寫出y1,y2關(guān)于x的函數(shù)解析式;

(3)設(shè)甲,乙兩人之間的距離為y,當(dāng)y=12時,求x的值.

查看答案和解析>>

同步練習(xí)冊答案