【題目】我們知道“對(duì)稱補(bǔ)缺”的思想是解決與軸對(duì)稱圖形有關(guān)的問(wèn)題的一種重要的添加輔助線的策略,參考這種思想解決下列問(wèn)題.
在△ABC中,D為△ABC外一點(diǎn).
(1)如圖1,若AC平分∠BAD,CE⊥AB于點(diǎn)E,∠ B+∠ADC=180,求證:BC=CD;
(2)如圖2,若∠ACB=90°, AC=BC,F是AC上一點(diǎn),AD⊥BF交BF延長(zhǎng)線于點(diǎn)D,且BF是∠CBA的角平分線.求證:2AD=BF.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.
【解析】
(1)在AB上取點(diǎn)G,使AG=AD,證明△ADC≌△AGC得DC=GC ,∠CDA=∠CGA, 可證∠B=∠CGE得到CB = CG,從而得到結(jié)論;
(2)分別延長(zhǎng)AD、BC交于點(diǎn)H,證明△ADB≌△BDH,得∠DAB=∠DHB,AB=BH ,所以△ABH為等腰三角形,證得2AD=AH,再證明BF= AH即可得證.
(1) 證明:在AB上取點(diǎn)G,使AG=AD
∵AC平分∠BAD
∠DAC=∠GAC,
在△ADC與△AGC中
AD=BD,
∠DAC=∠GAC,
AC=AC(公共邊)
△ADC≌△AGC (SAS)
DC=GC
∠CDA=∠CGA,
又∵∠ B+∠ADC=180,∠ CGE+∠AGC=180,
∠ B =∠ CGE
CB = CG
又∵DC=GC
CB=DC
(2) 證明:分別延長(zhǎng)AD、BC交于點(diǎn)H,
∵BD平分∠CBA
∠DBC=∠ABD,
∵AD⊥BF交BF延長(zhǎng)線于點(diǎn)D
∠ADB=∠HDB=90°,
在△ADB與△BDH 中
∠ADB=∠HDB
BD=BD
∠DBC=∠ABD,
△ADB≌△BDH
∠DAB=∠DHB,AB=BH
△ABH為等腰三角形
又∵BD平分∠CBA
AD=DH,即2AD=AH
∵∠ACB=90°, AC=BC,
∠B=∠CAB=45°,
∠DAB=(180° - ∠B )=90°-22.5°=67.5,
∠HAC=22.5°=∠CBD
在△ACH與△BCF 中
∠HAC=∠DBC
AC=CB
∠ACH=∠BDA
△ACH≌△BCF
BF= AH
又∵2AD=AH,
2AD=BF
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺(tái)進(jìn)價(jià)分別為 2000 元,1700 元的A,B兩種型號(hào)的凈水器,下表是近兩周的銷售情況:
(1)求A,B兩種型號(hào)的凈水器的銷售單價(jià);
(2)若電器公司準(zhǔn)備用不多于 54000 元的金額采購(gòu)這兩種型號(hào)的凈水器共 30 臺(tái),求 A種型號(hào)的凈水器最多能采購(gòu)多少臺(tái)?
(3)在(2)的條件下,公司銷售完這 30 臺(tái)凈水器能否實(shí)現(xiàn)利潤(rùn)超過(guò)12800 元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BOC=60°,點(diǎn)A是BO延長(zhǎng)線上的一點(diǎn),OA=10cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AB以2cm/s的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā)沿OC以1cm/s的速度移動(dòng),如果點(diǎn)P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間,當(dāng)t=_____s時(shí),△POQ是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△ABO的邊AB垂直于x軸,垂足為點(diǎn)B,反比例函數(shù)y=(x<0)的圖象經(jīng)過(guò)AO的中點(diǎn)C,交AB于點(diǎn)D.若點(diǎn)D的坐標(biāo)為(﹣4,n),且AD=3.
(1)求反比例函數(shù)y=的表達(dá)式;
(2)求經(jīng)過(guò)C、D兩點(diǎn)的直線所對(duì)應(yīng)的函數(shù)解析式;
(3)設(shè)點(diǎn)E是線段CD上的動(dòng)點(diǎn)(不與點(diǎn)C、D重合),過(guò)點(diǎn)E且平行y軸的直線l與反比例函數(shù)的圖象交于點(diǎn)F,求△OEF面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+(3m+1)x﹣m(m>且為實(shí)數(shù))與x軸分別交于點(diǎn)A、B(點(diǎn)B位于點(diǎn)A的右側(cè)且AB≠OA),與y軸交于點(diǎn)C.
(1)填空:點(diǎn)B的坐標(biāo)為 ,點(diǎn)C的坐標(biāo)為 (用含m的代數(shù)式表示);
(2)當(dāng)m=3時(shí),在直線BC上方的拋物線上有一點(diǎn)M,過(guò)M作x軸的垂線交直線BC于點(diǎn)N,求線段MN的最大值;
(3)在第四象限內(nèi)是否存在點(diǎn)P,使得△PCO,△POA和△PAB中的任意兩三角形都相似(全等是相似的特殊情況)?如果存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△ADE均為等腰直角三角形,連接BE,點(diǎn)F、G分別為AD、AC的中點(diǎn),連接FG.在△ADE繞A旋轉(zhuǎn)的過(guò)程中,當(dāng)B、D、E三點(diǎn)共線時(shí),AB=,AD=1,則線段FG的長(zhǎng)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們已經(jīng)知道,形如的無(wú)理數(shù)的化簡(jiǎn)要借助平方差公式:
例如:。
下面我們來(lái)看看完全平方公式在無(wú)理數(shù)化簡(jiǎn)中的作用。
問(wèn)題提出:該如何化簡(jiǎn)?
建立模型:形如的化簡(jiǎn),只要我們找到兩個(gè)數(shù),使,這樣,,那么便有:,
問(wèn)題解決:化簡(jiǎn),
解:首先把化為,這里,,由于4+3=7,,
即(,,
∴
模型應(yīng)用1:
利用上述解決問(wèn)題的方法化簡(jiǎn)下列各式:
(1);(2);
模型應(yīng)用2:
(3)在中,,,,那么邊的長(zhǎng)為多少?(結(jié)果化成最簡(jiǎn))。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,是內(nèi)的一點(diǎn).
(1)如圖,平分交于點(diǎn),點(diǎn)在線段上(點(diǎn)不與點(diǎn)、重合),且,求證:.
(2)如圖,若是等邊三角形,,,以為邊作等邊,連.當(dāng)是等腰三角形時(shí),試求出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,∠ABC、∠ACB的平分線相交于點(diǎn)O,MN過(guò)點(diǎn)O,且MN∥BC,分別交AB、AC于點(diǎn)M、N.OD⊥AB,OE⊥AC.
(1)求證:OD=OE.
(2)若O為MN的中點(diǎn),判斷△ABC的形狀,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com