【題目】已知,內(nèi)的一點(diǎn).

1)如圖,平分于點(diǎn),點(diǎn)在線段上(點(diǎn)不與點(diǎn)重合),且,求證:.

2)如圖,若是等邊三角形,,,以為邊作等邊,連.當(dāng)是等腰三角形時(shí),試求出的度數(shù).

【答案】(1)證明見解析;(2)當(dāng)、、時(shí),是等腰三角形.

【解析】

1)在CB上截取CH=CA,連接EH.只要證明ECA≌△ECHSAS),BH=EH即可解決問題;

2)首先證明BCE≌△ACFSAS),推出∠BEC=AFC=α,∠COB=CAD=α,∠AOE=200°-α,∠AFE=α-60°,∠EAF=40°,分三種情形分別討論即可解決問題

1)證明:在上截取,連接.

平分,∴,

,

,

,

,

,∴,

,∴.

2)證明:如圖2中,

,

,,

,

,

,,,

①要使,需

,∴

②要使,需,

,∴;

③要使,需

,∴.

所以當(dāng)、時(shí),是等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系中的任意兩點(diǎn)P1(x1,y1),P2(x2,y2),我們把|x1﹣x2|+|y1﹣y2|叫做P1、P2兩點(diǎn)間的直角距離,記作d(P1,P2).

(1)已知O為坐標(biāo)原點(diǎn),動點(diǎn)P(x,y)滿足d(O,P)=1,請寫出x與y之間滿足的關(guān)系式,并在所給的直角坐標(biāo)系中畫出所有符合條件的點(diǎn)P所組成的圖形;

(2)設(shè)P0(x0,y0)是一定點(diǎn),Q(x,y)是直線y=ax+b上的動點(diǎn),我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離.試求點(diǎn)M(2,1)到直線y=x+2的直角距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道對稱補(bǔ)缺的思想是解決與軸對稱圖形有關(guān)的問題的一種重要的添加輔助線的策略,參考這種思想解決下列問題.

ABC中,DABC外一點(diǎn).

(1)如圖1,若AC平分∠BAD,CEAB于點(diǎn)E,∠ B+ADC=180,求證:BC=CD;

(2)如圖2,若∠ACB=90°, AC=BC,FAC上一點(diǎn),ADBFBF延長線于點(diǎn)D,且BF是∠CBA的角平分線.求證:2AD=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,.

⑴已知線段AB的垂直平分線與BC邊交于點(diǎn)P,連結(jié)AP,求證:;

⑵以點(diǎn)B為圓心,線段AB的長為半徑畫弧,與BC邊交于點(diǎn)Q,連結(jié)AQ,若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BDABC的角平分線,且BD=BC,EBD延長線上的一點(diǎn),BE=BA,過EEFAB,F為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+BCD=180°;③AD=EF=EC;④AE=EC,其中正確的是________(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲乙兩名采購員去同一家飼料公司分別購買兩次飼料,兩次購買飼料價(jià)格分別為m/千克和n/千克,且m≠n,兩名采購員的采購方式也不同,其中甲每次購買1000千克,乙每次用去800元,而不管購買多少飼料.

(1)甲、乙所購飼料的平均單價(jià)各是多少?(用字母m、n表示)

(2)誰的購貨方式更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

在如圖所示的方格紙中,ABC的頂點(diǎn)都在小正方形的頂點(diǎn)上,以小正方形互相垂直的兩邊所在直線建立直角坐標(biāo)系.

1)作出ABC關(guān)于y軸對稱的A1B1C1,其中A,BC分別和A1,B1,C1對應(yīng);

2)平移ABC,使得A點(diǎn)在x軸上,B點(diǎn)在y軸上,平移后的三角形記為A2B2C2,作出平移后的A2B2C2,其中A,B,C分別和A2B2,C2對應(yīng);

3)填空:在(2)中,設(shè)原ABC的外心為M,A2B2C2的外心為M,則MM2之間的距離為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b分別交y軸、x軸于C、D兩點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于A(m,8),B(4,n)兩點(diǎn).

(1)求一次函數(shù)的解析式;

(2)根據(jù)圖象直接寫出kx+b﹣<0x的取值范圍;

(3)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線過點(diǎn)且平行于. 如果三個(gè)頂點(diǎn)的坐標(biāo)分別是,,關(guān)于直線的對稱圖形是.

(1)畫出

(2)直接寫出、、的坐標(biāo).

(3)求出四邊形的面積.

查看答案和解析>>

同步練習(xí)冊答案