【題目】如圖所示,在數(shù)軸上點A表示的有理數(shù)為-6,點B表示的有理數(shù)為4,點P從點A出發(fā),以每秒2個單位長度的速度在數(shù)軸上向點B運動,當點P到達點B后立即返回,仍然以每秒2個單位長度的速度運動至點A停止.設運動時間為t(單位:秒).

1)求t=1時點P表示的有理數(shù);

2)求點P與點B重合時的t值;

3)在點P沿數(shù)軸由點A到點B再回到點A的運動過程中,求點P與點A的距離(用含t的代數(shù)式表示);

4)當點P表示的有理數(shù)與原點的距離是2個單位長度時,直接寫出所有滿足條件的t.

【答案】14;(25;(32t10-2t-5);(4)當P表示2時,t=2t=8;當P表示2時,t=4t=6.

【解析】

1)根據(jù)P點的速度,有理數(shù)的加法,可得答案;

2)根據(jù)兩點間的距離公式,可得AB的長度,根據(jù)路程除以速度,可得時間;

3)根據(jù)分類討論:0≤t≤5,5≤t≤10,速度乘以時間等于路程,可得答案;

4)根據(jù)絕對值的意義,可得P點表示的數(shù),根據(jù)速度與時間的關系,可得答案.

(1)6+2×1=4,當t=1時,t=1時點P表示的有理數(shù)是4;

(2)P與點B重合,PA=BA=4(6)=10,

由路程除以速度,得

t=10÷2=5(s);

(3)0t5時,點P與點A的距離2t

5≤t≤10時,點P與點A的距離10-2t-5

4)點P表示的有理數(shù)與原點的距離是2個單位長度,得P點表示的數(shù)是22

P表示2時,t=2t=8

P表示2時,t=4t=6.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】a,b是表示兩個不同點A,B的有理數(shù),且|a|5,|b|2,它們在數(shù)軸的位置如圖所示.

(1)試確定a,b的值;并求表示ab兩數(shù)的點的距離;

(2)若點C在數(shù)軸上,點C到點A的距離是點C到點B距離的3倍,則點C表示的數(shù)為_ ____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸上兩點間的距離等于這兩個點所對應的數(shù)的差的絕對值.例:點A、B在數(shù)軸上對應的數(shù)分別為ab,則A、B兩點間的距離表示為AB|ab|.根據(jù)以上知識解題:

1)點A在數(shù)軸上表示3,點B在數(shù)軸上表示2,那么AB_______

2)在數(shù)軸上表示數(shù)a的點與﹣2的距離是3,那么a______

3)如果數(shù)軸上表示數(shù)a的點位于﹣42之間,那么|a+4|+|a2|______

4)對于任何有理數(shù)x|x3|+|x6|是否有最小值?如果有,直接寫出最小值.如果沒有.請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】據(jù)了解某市區(qū)居民生活用水開始實行階梯式計量水價,實行的階梯式計量水價分為三級(污水處理費、垃圾處理費等另計),如下表所示:

例:若某用戶20169月份的用水量為35,按三級計算則應交水費為:20×1.6+10×2.4+(352010)×4.8=80()

(1)如果小白家20166月份的用水量為10噸,則需繳交水費___元;

(2)如果小明家20167月份繳交水費44元,那么小明家20167月份的用水量為多少噸?

(3)如果小明家20168月份的用水量為a,那么則小明家該月應繳交水費多少元?(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的七邊形ABCDEFG中,∠1、∠2、∠3、∠4 四個角的外角和為180°,5 的外角為60°,BP、DP 分別平分∠ABC、∠CDE,則BPD 的度數(shù)是( 。

A. 130° B. 120° C. 110° D. 100°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.

(1)如圖1,等腰直角四邊形ABCD,AB=BC,ABC=90°

若AB=CD=1,ABCD,求對角線BD的長.

若ACBD,求證:AD=CD;

(2)如圖2,在矩形ABCD中,AB=5,BC=9,點P是對角線BD上一點,且BP=2PD,過點P作直線分別交邊AD,BC于點E,F(xiàn),使四邊形ABFE是等腰直角四邊形,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】墊球是排球隊常規(guī)訓練的重要項目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為連續(xù)接球10個,每墊球到位1個記1分.

運動員甲測試成績表

測試序號

1

2

3

4

5

6

7

8

9

10

成績(分)

7

6

8

7

7

5

8

7

8

7

(1)寫出運動員甲測試成績的眾數(shù)和中位數(shù);

(2)在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認為選誰更合適?為什么? (參考數(shù)據(jù):三人成績的方差分別為、)

(3)甲、乙、丙三人相互之間進行墊球練習,每個人的球都等可能的傳給其他兩人,球最先從甲手中傳出,第三輪結束時球回到甲手中的概率是多少?(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了豐富課外活動,某校將購買一些乒乓球拍和乒乓球,某商場銷售一種乒乓球拍和乒乓球,乒乓球拍每副定價80元,乒乓球每盒定價20元,“國慶節(jié)”期間商場決定開展促銷活動,活動期間向客戶提供兩種優(yōu)惠方案.

方案一:買一副乒乓球拍送一盒乒乓球;

方案二:乒乓球拍和乒乓球都按定價的90%付款.

某校要到該商場購買乒乓球拍20副,乒乓球(>20且為整數(shù))

1)若按方案一購買,需付款 (用含的整式表示,要化簡) 若按方案二購買,需付款 (用含的整式表示,要化簡).

2)若30,通過計算說明此時按哪種方案購買較為合算?

3)當30時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l1yx+bx軸交于點A,與y軸交于點B,且點C的坐標為(4,﹣4).

1)點A的坐標為   ,點B的坐標為   ;(用含b的式子表示)

2)當b4時,如圖所示.連接AC,BC,判斷ABC的形狀,并證明你的結論;

3)過點C作平行于y軸的直線l2,點P在直線l2上.當﹣5b4時,在直線l1平移的過程中,若存在點P使得ABP是以AB為直角邊的等腰直角三角形,請直接寫出所有滿足條件的點P的縱坐標.

查看答案和解析>>

同步練習冊答案