【題目】為了解2012年全國中學生創(chuàng)新能力大賽中競賽項目知識產(chǎn)權(quán)筆試情況,隨機抽查了部分參數(shù)同學的成績,整理并制作如下統(tǒng)計圖:

請根據(jù)以上圖表提供的信息,解答下列問題:

(1)本次調(diào)查的樣本容量為   ;

(2)補全頻數(shù)分布直方圖;

(3)在扇形統(tǒng)計圖中,m=   ,分數(shù)段60≤x<70的圓心角=   °;

(4)參加比賽的小聰說,他的比賽成績是所有抽查同學成績的中位數(shù),據(jù)此推斷他的成績落在   分數(shù)段內(nèi);

(5)如果比賽成績80分以上(含80分)為優(yōu)秀,那么你估計該競賽項目的優(yōu)秀率大約是   

【答案】(1)300;(2)見解析;(3)30,36;(4)80≤x<90;(5)60%

【解析】分析:(1)利用第一組的頻數(shù)除以頻率即可得到樣本容量;

2)根據(jù)80≤x90組頻數(shù)即可補全直方圖;

390÷300即為70≤x80組頻率,可求出m的值,利用360°乘以對應(yīng)的比例求得分數(shù)段60≤x70的圓心角;

4)根據(jù)中位數(shù)定義,找到位于中間位置的兩個數(shù)所在的組即可.

5)將比賽成績80分以上的兩組數(shù)的頻率相加即可得到計該競賽項目的優(yōu)秀率.

詳解:(1)此次調(diào)查的樣本容量為30÷0.1=300;

2)第三組的頻數(shù)是300-30-90-50=120

370≤x80一組的百分比是:=0.3=30%,則m=30,

分數(shù)段60≤x70的圓心角是360°×=36°

故答案是:30,36;

4)中位數(shù)為第150個數(shù)據(jù)和第151個數(shù)據(jù)的平均數(shù),而第150個數(shù)據(jù)和第151個數(shù)據(jù)位于80≤x90這一組,故中位數(shù)位于80≤x90這一組,

故答案是:80≤x90;

5)將80≤x9090≤x≤100這兩組的頻率相加即可得到優(yōu)秀率,優(yōu)秀率為60%

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)化簡求值:(2+a)(2-a)+a(a-2b)+3a5b÷(-a2b)4,其中ab=-.

(2)因式分解:a(n-1)2-2a(n-1)+a.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,直線ab被直線l所截,則圖中對頂角有______對,分別是_____________;鄰補角有______對,分別是____________;同位角有________對,分別是____________;內(nèi)錯角有________對,分別是____________;同旁內(nèi)角有______對,分別是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形是平行四邊形,點邊上運動(點不與點,重合)

1)如圖1,當點運動到邊的中點時,連接,若平分,證明:;

2)如圖2,過點且交的延長線于點,連接.若,,,在線段上是否存在一點,使得四邊形是菱形?若存在,請說明當發(fā),點分別在線段,上什么位置時四邊形是菱形,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若等腰梯形兩底角為30°,腰長為8,高和上底相等,則梯形中位線長為

A. 8B. 10C. 4D. 16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C,D的坐標分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點的三角形與△ABC相似,則點E的坐標不可能是( )

A. 60B. 6,3C. 65D. 4,2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某中學數(shù)學活動小組在學習了利用三角函數(shù)測高后,選定測量小河對岸一幢建筑物BC的高度,他們先在斜坡上的D處,測得建筑物頂端B的仰角為30°.且D離地面的高度DE=5m.坡底EA=30m,然后在A處測得建筑物頂端B的仰角是60°,點E,A,C在同一水平線上,求建筑物BC的高.(結(jié)果用含有根號的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著科技的進步和網(wǎng)絡(luò)資源的豐富,在線學習已經(jīng)成為更多人的自主學習選擇.某校計劃為學生提供以下四類在線學習方式:在線閱讀、在線聽課、在線答題和在線討論.為了解學生需求,該校隨機對本校部分學生進行了你對哪類在線學習方式最感興趣的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

1)求本次調(diào)查的學生總?cè)藬?shù),并補全條形統(tǒng)計圖;

2)求扇形統(tǒng)計圖中在線討論對應(yīng)的扇形圓心角的度數(shù);

3)該校共有學生3000人,請你估計該校對在線閱讀最感興趣的學生人數(shù).

查看答案和解析>>

同步練習冊答案