.如圖,A、B、C、P是⊙O上的四個點,∠ACB=60°,且PC平分∠APB,則△ABC的形狀是( )
A.直角三角形 B.等腰三角形
C.等邊三角形 D.等腰直角三角形
C【考點】圓周角定理;等邊三角形的判定.
【分析】由圓內(nèi)接四邊形的性質(zhì)得到∠APB=120°,根據(jù)角平分線的性質(zhì)得到∠BPC=∠APC=60°,根據(jù)圓周角定理得到∠BAC=∠ABC=60°,即可得到結(jié)論.
【解答】解:∵A、B、C、P是⊙O上的四個點,∠ACB=60°,
∴∠APB=120°,
∵PC平分∠APB,
∴∠BPC=∠APC=60°,
∵∠BPC=∠BAC,∠APC=∠ABC,
∴∠BAC=∠ABC=60°,
∵∠ACB=60°,
∴△ABC為等邊三角形.
故選C.
【點評】本題主要考查圓周角定理及等邊三角形的判定,掌握在同圓或等圓中同弧所對的圓周角相等是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在邊長為1的正方形組成的網(wǎng)格中建立直角坐標(biāo)系,△AOB的頂點均在格點上,點O為原點,點A、B的坐標(biāo)分別是A(3,2)、B(1,3).
(1)將△AOB向下平移3個單位后得到△A1O1B1,
則點B1的坐標(biāo)為 ;
(2)將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△A2OB2
,請在圖中作出△A2OB2,并求出這時點A2的坐標(biāo)為 ;
(3)在(2)中的旋轉(zhuǎn)過程中,線段OA掃過的圖形的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知關(guān)于x的方程x2﹣kx﹣6=0的一個根為x=3,則實數(shù)k的值為( )
A.1 B.﹣1 C.2 D.﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
當(dāng)x=a或x=b(a≠b)時,二次函數(shù)y=x2﹣2x+3的函數(shù)值相等,則x=a+b時,代數(shù)式2x2﹣4x+3的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點都在格點上,點A的坐標(biāo)為(2,4),請解答下列問題:
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點A1的坐標(biāo).
(2)畫出△A1B1C1繞原點O旋轉(zhuǎn)180°后得到的△A2B2C2,并寫出點A2的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com