【題目】(1)已知一個正分數(shù)(mn0),將分子、分母同時增加1,得到另一個正分數(shù),比較的值的大小,并證明你的結(jié)論;

(2)若正分數(shù)(mn0)中分子和分母同時增加k(整數(shù)k0),則_____

(3)請你用上面的結(jié)論解釋下面的問題:

建筑學(xué)規(guī)定:民用住宅窗戶面積必須小于地板面積,但按采光標準,窗戶面積與地板面積的比應(yīng)不小于10%,并且這個比值越大,住宅的采光條件越好.若原來的地板面積和窗戶面積分別為x,y,同時增加相等的窗戶面積和地板面積,則住宅的采光條件是變好還是變壞?請說明理由.

【答案】(1)>,證明見解析;(2)>;(3)住宅的采光條件變好了

【解析】

1)利用作差法求得,再判斷結(jié)果與0的大小即可得;

2)將以上所得結(jié)論中的1換作k,即可得出結(jié)論;

3)設(shè)增加面積為a,由(2)的結(jié)論知,據(jù)此可得答案.

(1)>(mn0)

證明:∵-==,

又∵mn0,

>0

>

(2)根據(jù)(1)的方法,將1換為k,有>(mn0,k0)

故答案為:>.

(3)設(shè)增加面積為a,

(2)的結(jié)論,可得

所以住宅的采光條件變好了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初一(1)(2)兩個班共104人去某地參觀.每班人數(shù)都在60以內(nèi),其中(1)班人數(shù)較少,不到50.該展覽的門票價格規(guī)定:單張票價格為15元;購票人數(shù)在51-100人每人門票價為13元;100人以上每人門票價為10.經(jīng)估算,如果兩班都以班為單位分別購票,則一共應(yīng)付1448元;如果兩班聯(lián)合起來,作為一個團體購票,則可以節(jié)省不少錢

請問:①兩班各有多少名學(xué)生?

②兩班聯(lián)合起來購票能省多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,直線與雙曲線交于點,點.

1)求反比例函數(shù)的表達式;

2)根據(jù)圖象直接寫出不等式的解集 .

3)將直線沿軸向下平移后,分別與軸,軸交于點,點,當(dāng)四邊形為平行四邊形時,求直線的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是∠BAC的平分線AD上一點,PEAC于點E,且AP2,∠BAC60°,有一點F在邊AB上運動,當(dāng)運動到某一位置時△FAP面積恰好是△EAP面積的2倍,則此時AF的長是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市教育行政部門為了了解初一學(xué)生每學(xué)期參加綜合實踐活動的情況,隨機抽樣調(diào)查了某校初一學(xué)生一個學(xué)期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖(如圖)

請你根據(jù)圖中提供的信息,回答下列問題:

(1)求出扇形統(tǒng)計圖中a的值,并求出該校初一學(xué)生總數(shù);

(2)分別求出活動時間為5天、7天的學(xué)生人數(shù),并補全頻數(shù)分布直方圖;

(3)求出扇形統(tǒng)計圖中活動時間為4的扇形所對圓心角的度數(shù);

(4)在這次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?

(5)如果該市共有初一學(xué)生6000人,請你估計活動時間不少于4的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀型綜合題

對于實數(shù),我們定義一種新運算(其中均為非零常數(shù)),等式右邊是通常的四則運算,由這種運算得到的數(shù)我們稱之為線性數(shù),記為,其中叫做線性數(shù)的一個數(shù)對.若實數(shù),都取正整數(shù),我們稱這樣的線性數(shù)為正格線性數(shù),這時的,叫做正格線性數(shù)的正格數(shù)對.

(1)若,則_________,_________;

(2)已知,.

①求字母的取值;

②若(其中為整數(shù)),問是否有滿足這樣條件的正格數(shù)對?若有,請找出;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:

①sin30°=,cos60°=;

②sin45°=,cos45°=;

③sin60°=,cos30°=

(1)根據(jù)上述規(guī)律,計算sin2α+sin2(90°-α)=

(2)計算:sin21°+sin22°+sin23°+…+sin289°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計劃在暑假兩個月內(nèi)對現(xiàn)有的教學(xué)樓進行加固改造,經(jīng)調(diào)查發(fā)現(xiàn),甲、乙兩個工程隊都有能力承包這個項目,已知甲隊單獨完成工程所需要的時間是乙隊的2倍,甲、乙兩隊合作12天可以完成工程的;甲隊每天的工作費用為4500元,乙隊每天的工作費用為10000元,根據(jù)以上信息,從按期完工和節(jié)約資金的角度考慮,學(xué)校應(yīng)選擇哪個工程隊?應(yīng)付工程隊費用多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七年級開展演講比賽,學(xué)校決定購買一些筆記本和鋼筆作為獎品.現(xiàn)有甲、乙兩家商店出售兩種同樣的筆記本和鋼筆.他們的定價相同:筆記本定價為每本25元,鋼筆每支定價6元,但是他們的優(yōu)惠方案不同,甲店每買一本筆記本贈一支鋼筆;乙店全部按定價的9折優(yōu)惠.已知七年級需筆記本20本,鋼筆x支(大于20支).問:

1)在甲店購買需付款  元,在乙店購買需付款  元;

2)若x=30,通過計算說明此時到哪家商店購買較為合算?

3)當(dāng)x=40時,請設(shè)計一種方案,使購買最省錢?算出此時需要付款多少元?

查看答案和解析>>

同步練習(xí)冊答案