【題目】如圖,正方形ABCD,點(diǎn)E,F分別在AD,CD上,且DE=CF,AF與BE相交于點(diǎn)G.
(1)求證:BE=AF;
(2)若AB=4,DE=1,求AG的長.
【答案】(1)見解析;(2)
【解析】
(1)由正方形的性質(zhì)得出∠BAE=∠ADF=90°,AB=AD=CD,得出AE=DF,由SAS證明△BAE≌△ADF,即可得出結(jié)論;
(2)由全等三角形的性質(zhì)得出∠EBA=∠FAD,得出∠GAE+∠AEG=90°,因此∠AGE=90°,由勾股定理得出BE=,在Rt△ABE中,由三角形面積即可得出結(jié)果.
(1)證明:∵四邊形ABCD是正方形,
∴∠BAE=∠ADF=90°,AB=AD=CD,
∵DE=CF,
∴AE=DF,
在△BAE和△ADF中,
∵,
,
,
(2)由(1)得:△BAE≌△ADF,
∴∠EBA=∠FAD,
∴∠GAE+∠AEG=90°,
∴∠AGE=90°,
∵AB=4,DE=1,
∴AE=3,
,
在中,
,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下敘述中,其中正確的有_________(請(qǐng)寫出所有正確敘述的序號(hào))
(1)若等腰三角形的一個(gè)外角為,則它的底角為
(2)“趙爽弦圖”是由于四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形(如圖所示)。小亮同學(xué)隨機(jī)地在大正方形及其內(nèi)部區(qū)域投針,若直角三角形的兩條直角邊的長分別是2和1,則針扎到小正方形(陰影)區(qū)域的概率是
(3)已知關(guān)于的方程的解是正數(shù),則;
(4)已知正比例函數(shù)反比例函數(shù)由構(gòu)造一個(gè)新函數(shù)其圖象如圖所示.(因其圖象似雙鉤,我們稱之為“雙鉤函數(shù)”).則它有下列一些性質(zhì): ①該函數(shù)的圖象是中心對(duì)稱圖形;②當(dāng)時(shí),該函數(shù)在時(shí)取得最大值-2;③的值不可能為1;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4.M、N在對(duì)角線AC上,且AM=CN,E、F分別是AD、BC的中點(diǎn).
(1)求證:△ABM≌△CDN;
(2)點(diǎn)G是對(duì)角線AC上的點(diǎn),∠EGF=90°,求AG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“倡導(dǎo)全民閱讀”“推動(dòng)國民素質(zhì)和社會(huì)文明程度顯著提高”已成為“十三五”時(shí)期的重要工作.某中學(xué)在全校學(xué)生中隨機(jī)抽取了部分學(xué)生對(duì)2018年度閱讀情況進(jìn)行問卷調(diào)查,并將收集的數(shù)據(jù)統(tǒng)計(jì)如表
數(shù)量/本 | 15 | 11 | 8 | 4 | 3 | 2 |
人數(shù) | 80 | 60 | 50 | 100 | 40 | 70 |
根據(jù)表中的信息判斷,下列結(jié)論錯(cuò)誤的是( )
A. 該校參與調(diào)查的學(xué)生人數(shù)為400人
B. 該校學(xué)生2018年度閱讀書數(shù)量的中位數(shù)為4本
C. 該校學(xué)生2018年度閱讀書數(shù)量的眾數(shù)為4本
D. 該校學(xué)生2018年平均每人閱讀8本書
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=10,tanA=2,BE⊥AC于點(diǎn)E,D是線段BE上的一個(gè)動(dòng)點(diǎn),則的最小值是( )
A. B. C. D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】齊齊哈爾市教育局想知道某校學(xué)生對(duì)扎龍自然保護(hù)區(qū)的了解程度,在該校隨機(jī)抽取了部分學(xué)生進(jìn)行問卷,問卷有以下四個(gè)選項(xiàng):A.十分了解;B.了解較多:C.了解較少:D.不了解(要求:每名被調(diào)查的學(xué)生必選且只能選擇一項(xiàng)).現(xiàn)將調(diào)查的結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:
(1)本次被抽取的學(xué)生共有_______名;
(2)請(qǐng)補(bǔ)全條形圖;
(3)扇形圖中的選項(xiàng)“C.了解較少”部分所占扇形的圓心角的大小為_______°;
(4)若該校共有名學(xué)生,請(qǐng)你根據(jù)上述調(diào)查結(jié)果估計(jì)該校對(duì)于扎龍自然保護(hù)區(qū)“十分了解”和“了解較多”的學(xué)生共有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC的平分線AO交BC于點(diǎn)O,以O為圓心,OC長為半徑作⊙O,⊙O交AO所在的直線于D、E兩點(diǎn)(點(diǎn)D在BC左側(cè)).
(1)求證:AB是⊙O的切線;
(2)連接CD,若AC=AD,求tan∠D的值;
(3)在(2)的條件下,若⊙O的半徑為5,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△AOC的直角邊OA在y軸正半軸上,且頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)C的坐標(biāo)為(1,2),直線y=﹣x+b過點(diǎn)C,與x軸交于點(diǎn)B,與y軸交于點(diǎn)D.
(1)B點(diǎn)的坐標(biāo)為 ,D點(diǎn)的坐標(biāo)為 ;
(2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度,沿O→A→C的路線向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以相同速度沿BO的方向向點(diǎn)O運(yùn)動(dòng),過點(diǎn)Q作QH⊥x軸,交線段BC或線段CO于點(diǎn)H.當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),點(diǎn)P和點(diǎn)Q都停止運(yùn)動(dòng),在運(yùn)動(dòng)過程中,設(shè)動(dòng)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒:
①設(shè)△CPH的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
②是否存在以Q、P、H為頂點(diǎn)的三角形的面積與S相等?若存在,直接寫出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)數(shù)學(xué)興趣小組在一次課外學(xué)習(xí)與探究中遇到一些新的數(shù)學(xué)符號(hào),他們將其中某些材料摘錄如下:
對(duì)于三個(gè)實(shí)數(shù)a,b,c,用M{a,b,c}表示這三個(gè)數(shù)的平均數(shù),用min{a,b,c}表示這三個(gè)數(shù)中最小的數(shù).例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.請(qǐng)結(jié)合上述材料,解決下列問題:
(1)①M{(﹣2)2,22,﹣22}= ; ②min{sin30°,cos60°,tan45°}= ;
(2)若M{﹣2x,x2,3}=2,求x的值;
(3)若min{3﹣2x,1+3x,﹣5}=﹣5,求x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com