【題目】已知數(shù),表示的點在數(shù)軸上的位置如圖所示.
(1)在數(shù)軸上表示出,的相反數(shù)的位置;
(2)若數(shù)與其相反數(shù)相距20個單位長度,則表示的數(shù)是多少?
(3)在(2)的條件下,若數(shù)表示的點與數(shù)的相反數(shù)表示的點相距5個單位長度,求表示的數(shù)是多少?
【答案】(1)圖見解析.(2)-10.(3)5
【解析】
(1)根據(jù)互為相反數(shù)的兩個數(shù)距離原點的距離相等的性質(zhì)畫出具體位置即可.
(2)互為相反數(shù)的兩個數(shù)關于原點對稱,則它們距離的一半即為數(shù)b的絕對值,而b在原點左側,為負數(shù).
(3)由圖知數(shù)b的相反數(shù)為正數(shù),且比a大,則直接用數(shù)b的值減去5即可得到數(shù)a.
(1)互為相反數(shù)的兩個數(shù)關于原點對稱,如圖所示:
(2)由題意可知,因為b和-b關于原點對稱,則b和-b的絕對值都為20÷2=10,而b在原點左側,則b為負數(shù),即b=-10.
(3)由(2)知,-b=10,a與-b相距5個單位長度,則a=-b-5=5.
故答案為:(1)圖見解析.(2)-10.(3)5
科目:初中數(shù)學 來源: 題型:
【題目】有個填寫運算符號的游戲:在“”中的每個□內(nèi),填入中的某一個(可重復使用),然后計算結果.
(1)計算:;
(2)若請推算□內(nèi)的符號;
(3)在“”的□內(nèi)填入符號后,使計算所得數(shù)最小,直接寫出這個最小數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形ABCD的頂點A、B的坐標分別為(0,2)、(1,0),頂點C在函數(shù)y=x2+bx-1的圖象上,將正方形ABCD沿x軸正方向平移后得到正方形A′B′C′D′,點D的對應點D′落在拋物線上,則點D與其對應點D′之間的距離為 ______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】嘉淇同學要證明命題“兩組對邊分別相等的四邊形是平行四邊形”是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.
已知:如圖1,在四邊形ABCD中,BC=AD,AB=
求證:四邊形ABCD是 四邊形.
(1)在方框中填空,以補全已知和求證;
(2)按嘉淇同學的思路寫出證明過程;
(3)用文字敘述所證命題的逆命題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等腰△ABC中,AC=BC,以BC為直徑的⊙O分別與AB,AC相交于點D,E,過點D作DF⊥AC,垂足為點F.
(1)求證:DF是⊙O的切線;
(2)分別延長CB,F(xiàn)D,相交于點G,∠A=60°,⊙O的半徑為6,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是邊長為的等邊△ABC的內(nèi)心,將△OBC繞點O逆時針旋轉30°得到△OB1C1,B1C1交BC于點D,B1C1交AC于點E,則CE=( )
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OD平分∠BOC,OE平分∠AOC,∠BOC=60°,∠AOC=58°.
(1)求出∠AOB及其補角的度數(shù);
(2)①請求出∠DOC和∠AOE的度數(shù);
②判斷∠DOE與∠AOB是否互補,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點O為直線AB上一點,將一個直角三角板COD的直角頂點放在點O處,并使OC邊始終在直線AB的上方,OE平分∠BOC.
(1)如圖1,若∠DOE=70°,則∠AOC =___________°;
(2)如圖1,若∠DOE=α,求∠AOC的度數(shù);(用含α的式子表示)
(3)如圖2,在(2)的條件下,若在∠AOC的內(nèi)部有一條射線OF,滿足∠BOE =(∠AOF-∠DOE),試確定∠AOF與∠DOE之間的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著通訊技術迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學興趣小組設計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學生,將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計共抽查了________名學生;
(2)將條形統(tǒng)計圖補充完整;
(3)若某校有1000名學生,試估計最喜歡用“微信”溝通的人數(shù);
(4)某天甲、乙兩名同學都想從“微信”、“QQ”、“電話”三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學恰好選中同一種溝通方式的概率。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com