如圖,已知弦AB與半徑相等,連接OB,并延長(zhǎng)使BC=OB.
(1)問(wèn)AC與⊙O有什么關(guān)系.并證明你的結(jié)論的正確性.
(2)請(qǐng)你在⊙O上找出一點(diǎn)D,使AD=AC(自己完成作圖,并證明你的結(jié)論).
(1)AC是⊙O的切線.
證明:連接OA,
∵OA=OB=AB,
∴∠OBA=∠OAB=∠O,
∵BC=OB,
∴BC=AB,
∴∠C=∠CAB,
∵∠O+∠C+∠OAC=180°,
即∠O+∠OAB+∠CAB+∠C=180°,
∴∠OAC=∠OAB+∠CAB=90°,
即OA⊥AC,
∴AC是⊙O的切線;

(2)延長(zhǎng)BO交⊙O于D,連接AD,則AD即為所求.
理由:∵OB=OA=AB,
∴∠AOB=60°,
∵∠OAC=90°,
∴∠C=90°-∠AOB=30°,
∵∠D=
1
2
∠AOB=30°,
∴∠D=∠C,
∴AC=AD.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線AB經(jīng)過(guò)⊙O上的點(diǎn)C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連接EC、CD.
(1)求證:直線AB是⊙O的切線;
(2)試猜想BC,BD,BE三者之間的等量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,平行四邊ABCD中,O為AB上的一點(diǎn),連接OD、OC,以O(shè)為圓心,OB為半徑畫圓,分別交OD,OC于點(diǎn)P、Q.若OB=4,OD=6,∠ADO=∠A,
PQ
=2π,判斷直線DC與⊙O的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),CD⊥AB,垂足為D,點(diǎn)P在BA的延長(zhǎng)線上,且PC是圓O的切線.
(1)求證:∠PCD=∠POC;
(2)若OD:DA=1:2,PA=8,求圓的半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,Rt△ABC中,∠C=90°,AC=3,BC=4,以C為圓心,以
12
5
為半徑作⊙C,則⊙C與直線AB的位置關(guān)系是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB為⊙O的直徑,弦CD⊥AB于點(diǎn)M,過(guò)點(diǎn)B作BECD,交AC的延長(zhǎng)線于點(diǎn)E,連接BC.
(1)求證:BE為⊙O的切線.
(2)若CD=6,tan∠BCD=
1
2
,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,P點(diǎn)在AB的延長(zhǎng)線上,弦CD⊥AB于E,∠PCE=2∠BDC.
(1)求證:PC是⊙O的切線;
(2)若AE:EB=2:1,PB=6,求弦CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

以半圓中的一條弦BC(非直徑)為對(duì)稱軸將弧BC折疊后與直徑AB交于點(diǎn)D,若
AD
DB
=
2
3
,且AB=10,則CB的長(zhǎng)為(  )
A.4
5
B.4
3
C.4
2
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖為△ABC和一圓的重迭情形,此圓與直線BC相切于C點(diǎn),且與AC交于另一點(diǎn)D.若∠A=70°,∠B=60°,則
CD
的度數(shù)為何(  )
A.50°B.60°C.100°D.120°

查看答案和解析>>

同步練習(xí)冊(cè)答案