【題目】如圖,在等腰梯形中,,,,,為下底上一點(diǎn)(不與點(diǎn)、重合),連接,過點(diǎn)作射線交線段于點(diǎn),使得,若,則________.
【答案】或
【解析】
作AF⊥BC于F,∠B=60°,由等腰梯形的性質(zhì)得到AF是BC、AD差的一半,在Rt△ABF中,根據(jù)∠B的度數(shù)及BF的長可求得AB的值,由DE:EC=5:3時,求出DE、CE的值.由等腰梯形的性質(zhì)可得出∠B=∠C,根據(jù)三角形外角的性質(zhì)可證得∠EPC=∠BAP,可證△ABP∽△PCE,設(shè)BP的長為x,進(jìn)而可表示出PC的長,然后根據(jù)相似三角形,可得出關(guān)于AB、BP、PC、CE的比例關(guān)系式,求出BP的長.
如圖,過A作AF⊥BC于F;
∵等腰梯形ABCD中,AD=6cm,BC=14cm,
∴BF=4
∵Rt△ABF中,∠B=60°,BF=4;
∴AB=CD=8cm,
∵DE:EC=5:3,
∴EC=3,
由∠APC為△ABP的外角得∠APC=∠B+∠BAP;
∵∠B=∠APE
∴∠EPC=∠BAP
∵∠B=∠C
∴△ABP∽△PCE,
∴=,
設(shè)BP=x,則PC=14x,
∴ =,
解得:x1=2,x2=12,
∴BP的長為2或12.
故答案為:2或12.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn),拋物線的頂點(diǎn)為軸于點(diǎn).將拋物線平移后得到頂點(diǎn)為且對稱軸為直的拋物線.
(1)求拋物線的解析式;
(2)如圖2,在直線上是否存在點(diǎn),使是等腰三角形?若存在,請求出所有點(diǎn)的坐標(biāo):若不存在,請說明理由;
(3)點(diǎn)為拋物線上一動點(diǎn),過點(diǎn)作軸的平行線交拋物線于點(diǎn),點(diǎn)關(guān)于直線的對稱點(diǎn)為,若以為頂點(diǎn)的三角形與全等,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為A(0,m)、B(n,0),且|m﹣n﹣3|+=0,點(diǎn)P從A出發(fā),以每秒1個單位的速度沿射線AO勻速運(yùn)動,設(shè)點(diǎn)P的運(yùn)動時間為t秒.
(1)求OA、OB的長;
(2)連接PB,設(shè)△POB的面積為S,用t的式子表示S;
(3)過點(diǎn)P作直線AB的垂線,垂足為D,直線PD與x軸交于點(diǎn)E,在點(diǎn)P運(yùn)動的過程中,是否存在這樣的點(diǎn)P,使△EOP≌△AOB?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰中,,,點(diǎn),點(diǎn)分別是軸,軸上兩個動點(diǎn),直角邊交軸于點(diǎn),斜邊交軸于點(diǎn).
(1)如圖①,當(dāng)?shù)妊?/span>運(yùn)動到使點(diǎn)恰為中點(diǎn)時,連接,求證:;
(2)如圖②,當(dāng)?shù)妊?/span>運(yùn)動到使時,點(diǎn)的橫坐標(biāo)為,.在軸上是否存在點(diǎn),使為等腰三角形?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知點(diǎn)、點(diǎn),動點(diǎn)從點(diǎn)開始在線段上以每秒個單位長度的速度向點(diǎn)移動,同時動點(diǎn)從點(diǎn)開始在線段上以每秒個單位長度的速度向點(diǎn)移動,設(shè)點(diǎn)、移動的時間為秒.
求點(diǎn)的坐標(biāo);
當(dāng)為何值時,的面積為個平方單位?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理是數(shù)學(xué)史上非常重要的一個定理.早在多年以前,人們就開始對它進(jìn)行研究,至今已有幾百種證明方法.在歐幾里得編的《原本》中證明勾股定理的方法如下,請同學(xué)們仔細(xì)閱讀并解答相關(guān)問題:如圖,分別以的三邊為邊長,向外作正方形、、.
(1)連接、,求證:
(2)過點(diǎn)作的垂線,交于點(diǎn),交于點(diǎn).
①試說明四邊形與正方形的面積相等;
②請直接寫出圖中與正方形的面積相等的四邊形.
(3)由第(2)題可得:正方形的面積正方形的面積_______________的面積,即在中,__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個箱子,其中甲箱內(nèi)有顆球,分別標(biāo)記號碼,且號碼為不重復(fù)的整數(shù),乙箱內(nèi)沒有球.已知小育從甲箱內(nèi)拿出顆球放入乙箱后,乙箱內(nèi)球的號碼的中位數(shù)為.若此時甲箱內(nèi)有顆球的號碼小于,有顆球的號碼大于,若他們的中位數(shù)都為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛慢車和一輛快車沿相同的路線從A地到B地,所行駛的路程與時間的函數(shù)圖形如圖所示,下列說法正確的有( )
①快車追上慢車需6小時;②慢車比快車早出發(fā)2小時;③快車速度為46km/h;④慢車速度為46km/h; ⑤A、B兩地相距828km;⑥快車從A地出發(fā)到B地用了14小時
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA,PB是⊙O的切線,A,B為切點(diǎn),AC為⊙O的直徑,弦BD⊥AC下列結(jié)論:①∠P+∠D=180°;②∠COB=∠DAB;③∠DBA=∠ABP;④∠DBO=∠ABP.其中正確的只有( )
A. ①③ B. ②④ C. ②③ D. ①④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com