已知,如圖,矩形ABCD中,E是CD的中點(diǎn),連接BE并延長(zhǎng)BE交AD的延長(zhǎng)線于點(diǎn)F,連接AE.
(1)求證:AD=DF;
(2)若AD=3,AE⊥BE,求AB的長(zhǎng).
【考點(diǎn)】矩形的性質(zhì);全等三角形的判定與性質(zhì);勾股定理.
【專題】幾何綜合題.
【分析】(1)根據(jù)E是CD的中點(diǎn),BC∥AF可確定EF=EB,從而得出△EBC≌△EFD,繼而得出結(jié)論.
(2)由(1)得出的EF=EB,結(jié)合AE⊥BE可得AB=AF,從而根據(jù)AD=3可得出答案.
【解答】解:(1)∵BC∥AF,E是CD的中點(diǎn),
∴E是線段FB的中點(diǎn),
∴FE=EB,
又∠FED=∠BEC,DE=EC,
∴△EBC≌△EFD,
∴AD=DF.
(2)由(1)得:EF=EB,
又AE⊥BE,
∴AB=AF(中垂線的性質(zhì))
∴AB=AF=2AD=6.
【點(diǎn)評(píng)】本題考查了矩形的性質(zhì)及勾股定理的知識(shí),有一定的難度,解答本題的關(guān)鍵是根據(jù)題意得出E是FB的中點(diǎn),這是本題的突破口.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖放置的△OAB1,△B1A1B2,△B2A2B3,…都是邊長(zhǎng)為1的等邊三角形,點(diǎn)A在x軸上,點(diǎn)O,B1,B2,B3,…都在直線l上,則點(diǎn)A2016的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,某校數(shù)學(xué)興趣小組為測(cè)得大廈AB的高度,在大廈前的平地上選擇一點(diǎn)C,測(cè)得大廈頂端A的仰角為30°,再向大廈方向前進(jìn)80米,到達(dá)點(diǎn)D處(C、D、B三點(diǎn)在同一直線上),又測(cè)得大廈頂端A的仰角為45°,請(qǐng)你計(jì)算該大廈的高度.(精確到0.1米,參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列命題中,正確的是( )
A.對(duì)角線相等的四邊形是矩形
B.對(duì)角線互相平分的四邊形是平行四邊形
C.對(duì)角線互相垂直的四邊形是菱形
D.對(duì)角線互相垂直且相等的四邊形是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列計(jì)算正確的是( 。
A.x2•x3=x6 B.x5+x5=2x10
C.(﹣2x)3=8x3 D.(﹣2x3)÷(﹣6x2)=x
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(12,0),動(dòng)直線OB與AB相交于點(diǎn)B,且BD⊥x軸于D,BD=3,則△OAB的周長(zhǎng)的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
由若干個(gè)相同的小立方體搭成的幾何體的三視圖如圖所示,則搭成這個(gè)幾何體的小立方體的個(gè)數(shù)是( )
A.3 B.4 C.5 D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知:直線x-2y=-k+6和x+3y=4k+1,若它們的交點(diǎn)在第四象限內(nèi).
(1)求k的取值范圍.
(2)若k為非負(fù)整數(shù),求直線x-2y=-k+6和x+3y=4k+1分別與y軸的交點(diǎn),及它們的交點(diǎn)所圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
一次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo)是_________,與y軸的交點(diǎn)坐標(biāo)是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com