【題目】觀察下面三行數(shù)
①2,-4,8,-16,32,-64,......;
②4,-2,10,-14,34,-62,......;
③-1,2,-4,8,-16,32,......;
取每一行的第n個(gè)數(shù),依次記為a,b,c. 如上圖,當(dāng)n=2時(shí),x=-4,y=-2,z=2.
(1)當(dāng)n=7時(shí),請直接寫出x、y、z的值,并求這三個(gè)數(shù)中最大的數(shù)與最小的數(shù)的差;
(2)已知n為偶數(shù),且x、y、z這三個(gè)數(shù)中最大的數(shù)與最小的數(shù)的差為384,求n的值;
(3)若m=x+y+z,則x、y、z這三個(gè)數(shù)中最大的數(shù)與最小的數(shù)的差為______(用含m的式子表示)
【答案】(1)x=128,y=130,z=64,194;(2)n=8;(3)當(dāng)n為奇數(shù)時(shí)差為;當(dāng)n為偶數(shù)時(shí)差為.
【解析】
(1)根據(jù)已知發(fā)現(xiàn):第①行的數(shù),從第二個(gè)數(shù)開始,后面一個(gè)數(shù)是前面一個(gè)數(shù)乘2得到的,第②行的數(shù)第①行對應(yīng)的數(shù)加2;第③行的數(shù)為第①行對應(yīng)的數(shù)的一半的相反數(shù),依此分別求出x、y、z的值,進(jìn)而求解即可;
(2)首先判斷出n為偶數(shù)時(shí),z最大,x最小,再求出zx=xx=x,根據(jù)x、y、z這三個(gè)數(shù)中最大的數(shù)與最小的數(shù)的差為384列出方程,進(jìn)而求出n的值;
(3)根據(jù)m=x+y+z求出m=×(2)n+2,再分n為奇數(shù)與n為偶數(shù)兩種情況討論即可.
(1)根據(jù)題意,得x=(2)7=128,y=(2)7+2=130,z=×[(2)7]=64,
這三個(gè)數(shù)中最大的數(shù)與最小的數(shù)的差為:130(64)=194;
(2)當(dāng)n為偶數(shù)時(shí),x<y<0,z>0,
∵z=x,
∴zx=xx=x=384,
∴x=256,
∵(2)8=256,
∴n=8;
(3)m=x+y+z=(2)n+[(2)n+2]+{×[(2)n]}
=(2)n(2)n+2-×[-(2)n]
=×(2)n+2,
①當(dāng)n為奇數(shù)時(shí),y>x>z,
yz=[(2)n+2]{ ×[(2)n]}
=(2)n+2×(2)n
=×(2)n+2
=
②當(dāng)n為偶數(shù)時(shí),z>y>x,
zx={×[(2)n]}[(2)n]
=×(2)n
=×(2)n
=
故答案為當(dāng)n為奇數(shù)時(shí)差為;當(dāng)n為偶數(shù)時(shí)差為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)到目前為止,已研究的圖形變換有哪幾種?這些變換的共同性質(zhì)有哪些?
(2)如圖,O是正六邊形ABCDEF的中心,圖中可由△OBC旋轉(zhuǎn)得到的三角形有a個(gè),可由△OBC平移得到的三角形有b個(gè),可由△OBC軸對稱得到的三角形有c個(gè),試求(a+b+c)a+b-c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)圖像與一次函數(shù)圖像交于點(diǎn)A(1,4)和點(diǎn)B(m,--2).
(1)求這兩個(gè)函數(shù)的關(guān)系式;
(2)觀察圖像,寫出使得成立的自變量x的取值范圍;
(3)連結(jié)OA,OB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,搭一個(gè)正方形需要4根火柴棒,搭2個(gè)正方形需要7根火柴棒,搭3個(gè)正方形需要10根火柴棒.
……
(1)若搭5個(gè)這樣的正方形,這需要 根火柴棒;
(2)若搭n個(gè)這樣的正方形,這需要 根火柴棒;
(3)若現(xiàn)在有2018根火柴棒,要搭700個(gè)這樣的正方形,至少還需要火柴多少根?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】猜想與證明:如圖①擺放矩形紙片ABCD與矩形紙片ECGF,使B,C,G三點(diǎn)在一條直線上,CE在邊CD上.連結(jié)AF,若M為AF的中點(diǎn),連結(jié)DM,ME,試猜想DM與ME的數(shù)量關(guān)系,并證明你的結(jié)論.
拓展與延伸:
(1)若將“猜想與證明”中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為__________________;
(2)如圖②擺放正方形紙片ABCD與正方形紙片ECGF,使點(diǎn)F在邊CD上,點(diǎn)M仍為AF的中點(diǎn),試證明(1)中的結(jié)論仍然成立.[提示:直角三角形斜邊上的中線等于斜邊的一半]
① ②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答題
已知張強(qiáng)家.體育場.文具店在同一直線上.下面的圖象反映的過程是:張強(qiáng)從家跑步去體育場,在那里鍛煉了一陣后又走到文具店去買筆,然后散步走回家.圖中x表示時(shí)間,y表示張強(qiáng)離家的距離.據(jù)圖象回答下列問題:
(1)體育場離張強(qiáng)家多遠(yuǎn)?張強(qiáng)從家到體育場用了多少時(shí)間?
(2)張強(qiáng)在文具店停留了多少時(shí)間?
(3)張強(qiáng)從文具店回家平均每分鐘走多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是某水庫一周內(nèi)水位高低的變化情況(用正數(shù)記水位比前一日上升數(shù),用負(fù)數(shù)記下降數(shù)).那么本周星期幾水位最低 ( )
A. 星期二B. 星期四C. 星期六D. 星期五
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣1,0),點(diǎn)C(0,5),另拋物線經(jīng)過點(diǎn)(1,8),M為它的頂點(diǎn).
(1)求拋物線的解析式;
(2)求△MCB的面積S△MCB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù)a、b在數(shù)軸上的對應(yīng)點(diǎn)如圖所示
(1) 填空:(填“<”、“>”或“=”)
a_________0;b_________0;|a+b|_________|a|+|b|
(2) 用“<”將a、b、-b、、0連接起來
(3) 化簡:|a+b|-|b+1|-|a-1|=______________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com