【題目】如圖,在正方形ABCD的外側, 作兩個等腰三角形ADEDCF,

(1) EA=ED=FD=FC,請判斷BEAF的關系?并給予證明.

(2)若三角形ADEDCF為一般三角形,且AE=DF,ED=FC,請用備用圖畫出圖形,直接寫出BEAF的關系,不用證明.

【答案】1AFBE,AFBE,理由見解析(2AFBE,AFBE,理由見解析

【解析】

1)根據(jù)正方形的性質、等腰三角形的性質以及全等三角形的判定定理證明△BAE≌△ADF,根據(jù)全等三角形的性質進行證明;

2)同(1)一樣的方法證明即可.

1)在正方形ABCD中,∠BAD=∠ADC90,ABADCD

EAEDFDFC,

在△AED和△DFC中,

,

∴△AED≌△DFCSSS),

∴∠EAD=∠FDC

∴∠BAD+∠EAD=∠ADC+∠FDC

即∠BAE=∠ADF

在△BAE和△ADF中,

,

∴△BAE≌△ADFSAS

AFBE

∴∠ABE=∠DAF

∵∠DAF+∠BAF90,

∴∠ABE+∠BAF90

∴∠AMB90,

AFBE

AFBEAFBE

2)所畫圖形如圖,AFBEAFBE理由如下:

在△AED和△DFC中,

∴△AED≌△DFCSSS),

∴∠EAD=∠FDC

∴∠BAD+∠EAD=∠ADC+∠FDC.即∠BAE=∠ADF

在△BAE和△ADF中, ,

∴△BAE≌△ADFSAS),

AFBE,

∴∠ABE=∠DAF

∵∠DAF+∠BAF90,

∴∠ABE+∠BAF90

∴∠AMB90,

AFBE

AFBE,AFBE

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學拓展課研究小組經(jīng)過市場調查,發(fā)現(xiàn)某種衣服的銷量與售價是一次函數(shù)關系,具體信息如下表:

售價(元/件)

200

210

220

230

月銷量(件)

200

180

160

140

已知該運動服的進價為每件160元,售價為x元,月銷量為y件.

1)求出y關于x的函數(shù)關系式;

2)若銷售該運動服的月利潤為w元,求出w關于x的函數(shù)關系式,并求出月利潤最大時的售價;

3)由于運動服進價降低了a元,商家決定回饋顧客,打折銷售,結果發(fā)現(xiàn),此時月利潤最大時的售價比調整前月利潤最大時的售價低10元,則a的值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠EDF的頂點D在△ABC的邊AB所在直線上(不與A,B重合)DEAC所在直線于點M,DFBC所在直線于點N,設AM=xBN=y,記△ADM的面積為S1,△BND的面積為S2

1)如圖(1),當△ABC是等邊三角形,AB=6,∠EDF=A,且DEBC,AD=2時,S1S2=    

2)在(1)的條件下,將點D沿AB平移,使AD=4,再將∠EDF繞點D旋轉如圖(2)所示位置,

①求yx的函數(shù)關系式;②求S1S2的值;

3)當△ABC是等腰三角形時,設∠B=A=EDF,如圖(3),當點DBA的延長線上運動時,設的AD=a,BD=b,直接寫出S1S2的關系式(用含a、bα的三角函數(shù)表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,ABAC,∠BAC120°,點DE分別在邊AB,AC上,ADAE,連接DC,點M,P,N分別為DE,DC,BC的中點.

1)觀察猜想

1中,線段PMPN的數(shù)量關系是   ,∠MPN的度數(shù)是   ;

2)探究證明

把△ADE繞點A逆時針方向旋轉到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;

3)拓展延伸

把△ADE繞點A在平面內自由旋轉,若AD4,AB8,請直接寫出△PMN面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著經(jīng)濟的快速發(fā)展,環(huán)境問題越來越受到人們的關注.某校學生會為了了解垃圾分類知識的普及情況,隨機調查了部分學生,調查結果分為非常了解”“了解”“了解較少”“不了解四類,并將調查結果繪制成下面兩幅統(tǒng)計圖.

1)求:本次被調查的學生有多少名?補全條形統(tǒng)計圖.

2)估計該校1200名學生中非常了解了解的人數(shù)和是多少.

3)被調查的非常了解的學生中有2名男生,其余為女生,從中隨機抽取2人在全校做垃圾分類知識交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的一元二次方程

1)求證:無論取何值,原方程總有兩個不相等的實數(shù)根;

2)若、是原方程的兩根,且,求的值和此時方程的兩根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系 XOY中,對于任意兩點 (,) (,)非常距離,給出如下定義: ,則點 與點 非常距離 ;若 ,則點 與點非常距離 .

例如:點 (1,2),點 (3,5),因為 ,所以點 與點 非常距離 ,也就是圖1中線段 Q與線段 Q長度的較大值(點 Q為垂直于 y軸的直線 Q與垂直于 x軸的直線 Q的交點)。

(1)已知點 A(-,0), B y軸上的一個動點,①若點 A與點 B非常距離2,寫出一個滿足條件的點 B的坐標;②直接寫出點 A與點 B非常距離的最小值;

(2)已知 C是直線 上的一個動點,①如圖2,點 D的坐標是(0,1),求點 C與點 D非常距離的最小值及相應的點 C的坐標; ②如圖3, E是以原點 O為圓心,1為半徑的圓上的一個動點,求點 C與點 E非常距離的最小值及相應的點 E和點 C的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠用天時間生產(chǎn)一款新型節(jié)能產(chǎn)品,每天生產(chǎn)的該產(chǎn)品被某網(wǎng)店以每件元的價格全部訂購,在生產(chǎn)過程中,由于技術的不斷更新,該產(chǎn)品第天的生產(chǎn)成本(元/件)與(天)之間的關系如圖所示,第天該產(chǎn)品的生產(chǎn)量(件)與(天)滿足關系式

天,該廠生產(chǎn)該產(chǎn)品的利潤是   元;

設第天該廠生產(chǎn)該產(chǎn)品的利潤為元.

①求之間的函數(shù)關系式,并指出第幾天的利潤最大,最大利潤是多少?

②在生產(chǎn)該產(chǎn)品的過程中,當天利潤不低于元的共有多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為菱形,對角線AC,BD相交于點E,F是邊BA延長線上一點,連接EF,以EF為直徑作⊙O,交DCD,G兩點,AD分別于EF,GF交于I,H兩點.

1)求∠FDE的度數(shù);

2)試判斷四邊形FACD的形狀,并證明你的結論;

3)當G為線段DC的中點時,

求證:FD=FI

AC=2m,BD=2n,求⊙O的面積與菱形ABCD的面積之比.

查看答案和解析>>

同步練習冊答案