下列命題中,是真命題的是( 。

A.等腰三角形都相似 B.等邊三角形都相似

C.銳角三角形都相似 D.直角三角形都相似

 


B【考點(diǎn)】命題與定理;相似三角形的判定.

【分析】利用相似三角形的判定定理對每個選項逐一判斷后即可確定正確的選項.

【解答】解:A、等腰三角形不一定相似,是假命題,故A選項錯誤;

B、等邊三角形都相似,是真命題,故B選項正確;

C、銳角三角形不一定都相似,是假命題,故C選項錯誤;

D、直角三角形不一定都相似,是假命題,故D選項錯誤.

故選:B.

【點(diǎn)評】本題考查了命題與定理及相似三角形的判定的知識,解題的關(guān)鍵是了解相似三角形的判定定理,難度不大.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


已知二次函數(shù)y=a(x﹣m)2+n的圖象經(jīng)過(0,5)、(10,8)兩點(diǎn).若a<0,0<m<10,則m的值可能是(     )

A.2       B.8       C.3       D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,動點(diǎn)P從點(diǎn)C出發(fā),沿CA方向運(yùn)動,速度是2cm/s,動點(diǎn)Q從點(diǎn)B出發(fā),沿BC方向運(yùn)動,速度是1cm/s.

(1)幾秒后P、Q兩點(diǎn)相距25cm?

(2)幾秒后△PCQ與△ABC相似?

(3)設(shè)△CPQ的面積為S1,△ABC的面積為S2,在運(yùn)動過程中是否存在某一時刻t,使得S1:S2=2:5?若存在,求出t的值;若不存在,則說明理由.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,AD是⊙O的直徑.

(1)如圖1,垂直于AD的兩條弦B1C1,B2C2把圓周4等分,則∠B1的度數(shù)是      ,∠B2的度數(shù)是      ;

(2)如圖2,垂直于AD的三條弦B1C1,B2C2,B3C3把圓周6等分,則∠B3的度數(shù)是      ;

(3)如圖3,垂直于AD的n條弦B1C1,B2C2,B3 C3,…,BnCn把圓周2n等分,則∠Bn的度數(shù)是      (用含n的代數(shù)式表示∠Bn的度數(shù)).

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在平面直角坐標(biāo)系中,已知點(diǎn)B的坐標(biāo)是(﹣1,0),點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)C的坐標(biāo)是(0,4),拋物線過A、B、C三點(diǎn).

(1)求拋物線的解析式.

(2)點(diǎn)N事拋物線上的一點(diǎn)(點(diǎn)N在直線AC上方),過點(diǎn)N作NG⊥x軸,垂足為G,交AC于點(diǎn)H,當(dāng)線段ON與CH互相平分時,求出點(diǎn)N的坐標(biāo).

(3)設(shè)拋物線的對稱軸為直線L,頂點(diǎn)為K,點(diǎn)C關(guān)于L的對稱點(diǎn)J,x軸上是否存在一點(diǎn)Q,y軸上是否一點(diǎn)R使四邊形KJQR的周長最。咳舸嬖,請求出周長的最小值;若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,∠O=30°,C為OB上一點(diǎn),且OC=6,以點(diǎn)C為圓心,半徑為3的圓與OA的位置關(guān)系是( 。

A.相離 B.相交

C.相切 D.以上三種情況均有可能

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,觀測點(diǎn)A、旗桿DE的底端D、某樓房CB的底端C三點(diǎn)在一條直線上,從點(diǎn)A處測得樓頂端B的仰角為22°,此時點(diǎn)E恰好在AB上,從點(diǎn)D處測得樓頂端B的仰角為38.5°.已知旗桿DE的高度為12米,試求樓房CB的高度.(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


有若干張如圖所示的正方形A類、B類卡片和長方形C類卡片,如果要拼成一個長為(2a+b),寬為(3a+2b)的大長方形,則需要C類卡片            張.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


計算: xy﹣2(xy﹣xy2)+(xy+xy2),其中x、y滿足|x﹣6|+(y+2)2=0.

查看答案和解析>>

同步練習(xí)冊答案