【題目】綜合與實踐:

已知點D為等邊△ABC 的邊AB所在直線上一動點(點D與點A和點B不重合),連接CD,以CD為邊在CD上方作等邊△CDE,連接 AE

操作發(fā)現(xiàn):

1)如圖1,點D在邊AB上,則 AEBD 有怎樣的數(shù)量關系? 說明理由;

類比猜想:

2)如圖2,若點D在邊BA延長線上,則 AEBD有怎樣的數(shù)量關系? 說明理由;

拓廣探究:

3)如圖3,點D在邊AB上,以CD為邊分別在CD下方和上方作等邊△CDF 和等邊△CDE,連接 AEBF,直接寫出AE,BF AB的數(shù)量關系.

【答案】(1),理由詳見解析;(2,理由詳見解析;(3

【解析】

1)根據等邊三角形的性質可得ACBC,CDCE,∠ACB∠DCE,再求出,然后利用邊角邊證明△ACE△BCD全等,根據全等三角形對應邊相等證明即可;
2)證明方法同(1);
3)先證明△ACD≌△BCF,所以ADBF,由(1)知:AEBD,相加可得結論.

解:(1,理由如下:

都是等邊三角形,

,,

中,

2,理由如下:

都是等邊三角形,

,,

中,

3.理由是:

∵△ABC△CDF都是等邊三角形,

∴ACBCCDCF,∠ACB∠DCF60°,

∴∠ACD∠BCF,

△ACD△BCF中,

∴△ACD≌△BCFSAS),

∴ADBF,

由(1)知:AEBD,

∴ABBDADAEBF

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小紅爸爸從家騎電瓶車出發(fā),沿一條直路到相距2400m的學校接小紅回家,小紅爸爸出發(fā)的同時,小紅以96m/min的速度從學校沿同一條道路步行回家,小紅爸爸趕到學校校門口等候2min后知道小紅已離校,立即沿原路以原速返回,設他們出發(fā)的時間為t min,圖示中的折線OABD表示小紅爸爸與家之間的距離S1t之間的函數(shù)關系,線段EF表示小紅與家之間的距離S2t之間的函數(shù)關系,則小紅爸爸從家出發(fā)在返回途中追上小紅的時間是(

A.12minB.16minC.18minD.20min

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:關于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.

(1)求二次函數(shù)的表達式;

(2)y軸上是否存在一點P,使PBC為等腰三角形.若存在,請求出點P的坐標;

(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M 達點B時,點M、N同時停止運動,問點M、N運動到何處時,MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線PA交O于A、B兩點,AE是O的直徑,點C為O上一點,且AC平分PAE,過C作CDPA,垂足為D.

(1)求證:CD為O的切線;

(2)若DC+DA=6,⊙O的直徑為10,求AB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC 中,ADBC 于點 D,點 E BD邊上一點,過點 E EGAD,分別交 AB CA 的延長線于點 F,G,∠AFG=G

1)證明:△ABD≌△ACD

2)若∠B=40°,直接寫出∠FAG= °

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,的平分線上一點,,,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的一元二次方程

若方程的一個根為,求的值及另一個根;

若該方程根的判別式的值等于,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等邊三角形中,的中點,延長線上的一點,且,作,垂足為,求:

1的度數(shù);

2)求證:的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖一段拋物線:y=﹣x(x﹣3)(0≤x≤3),記為C1,它與x軸交于點O和A1;將C1繞A1旋轉180°得到C2,交x軸于A2;將C2繞A2旋轉180°得到C3,交x軸于A3,如此進行下去,直至得到C10,若點P(28,m)在第10段拋物線C10上,則m的值為( 。

A. 1 B. ﹣1 C. 2 D. ﹣2

查看答案和解析>>

同步練習冊答案