【題目】已知二次函數(shù)的圖象如圖所示,對稱軸為.下列結論中,正確的是(

A.B.C.D.

【答案】D

【解析】

由二次函數(shù)的性質(zhì),即可確定ab,c的符號,即可判定A是錯誤的;又由對稱軸為,即可求得a=b,可判定B錯誤;由b0c0,即可判定C錯誤;然后由拋物線與x軸交點坐標的特點,判定D正確.

∵開口向上,

a0

∵拋物線與y軸交于負半軸,

c0

∵對稱軸在y軸左側,

b0,

abc0,

A選項錯誤;

B、∵對稱軸:

a=b

,故B選項錯誤;

C、∵b0,c0,

,

C選項錯誤;

D、∵對稱軸為,與x軸的一個交點的取值范圍為x11,

∴與x軸的另一個交點的取值范圍為x2-2

∴當x=-2時,4a-2b+c0

4a+c2b,

D選項正確;

故答案為:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】等邊三角形ABC中,AB3,點D在直線BC上,點E在直線AC上,且∠BAD=∠CBE,當BD1時,則AE的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某班甲、乙、丙三位同學最近5次數(shù)學成績及其所在班級相應平均分的折線統(tǒng)計圖,則下列判斷錯誤的是( ).

A. 甲的數(shù)學成績高于班級平均分,且成績比較穩(wěn)定

B. 乙的數(shù)學成績在班級平均分附近波動,且比丙好

C. 丙的數(shù)學成績低于班級平均分,但成績逐次提高

D. 就甲、乙、丙三個人而言,乙的數(shù)學成績最不穩(wěn)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了幫助遭受自然災害的地區(qū),某學校號召同學們自愿捐款,已知第一次捐款總額為5800元,第二次捐款總額6000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額正好相等.

每桶容積(升)

20

15

每桶價格(元)

5.6

4.5

1)求兩次各有多少人捐款?

2)民政部門要求將捐款換成實物,統(tǒng)一運送到災區(qū).學校決定將捐款用于購買桶裝水現(xiàn)有兩種型號桶裝水,上表是這兩種桶裝水的容積和單價.學校按民政局的救災規(guī)劃需訂購總容積為40000升的桶裝水,用同學們的捐款至少需訂購型水多少桶.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】博文書店舉行購書優(yōu)惠活動:

①一次性購書不超過100元,不享受打折優(yōu)惠;

②一次性購書超過100元但不超過200元一律打九折;

③一次性購書200元以上一律打七折.

小麗在這次活動中,兩次購書總共付款229.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種型號油電混合動力汽車,從A地到B地燃油行駛純?nèi)加唾M用76元,從A地到B地用電行駛純電費用26元,已知每行駛1千米,純?nèi)加唾M用比純用電費用多0.5元.

1求每行駛1千米純用電的費用;

2若要使從A地到B地油電混合行駛所需的油、電費用合計不超過39元,則至少用電行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBC,∠B90°,BC6AD3,∠DCB30°,點EF同時從B點出發(fā),沿射線BC向右勻速移動.已知F點移動速度是E點移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設E點移動距離為x0x6).

1)點G在四邊形ABCD的邊上時,x   ;點F與點C重合時,x   ;

2)求出使△DFC成為等腰三角形的x的值;

3)求△EFG與四邊形ABCD重疊部分的面積yx之間的函數(shù)關系式,并直接寫出y的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸交于點,與軸交于點,且與雙曲線的一個交點為,將直線軸下方的部分沿軸翻折,得到一個“”形折線的新函數(shù).若點是線段上一動點(不包括端點),過點軸的平行線,與新函數(shù)交于另一點,與雙曲線交于點

1)若點的橫坐標為,求的面積;(用含的式子表示)

2)探索:在點的運動過程中,四邊形能否為平行四邊形?若能,求出此時點的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)的圖像交于,兩點,與軸分別交于兩點,且

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)若點與點關于軸對稱,連接,求的面積.

查看答案和解析>>

同步練習冊答案