【題目】如圖.拋物線經(jīng)過三點(diǎn).

1)求拋物線的函數(shù)關(guān)系式;

2)若直線是拋物線的對(duì)稱軸,設(shè)點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),當(dāng)的周長最小時(shí),求點(diǎn)的坐標(biāo);

3)在線段上是否存在點(diǎn),使得以線段為直徑的圓與邊交于點(diǎn)(與點(diǎn)不同),且以點(diǎn)為頂點(diǎn)的三角形是等腰三角形?若存在,求出的值;若不存在,請(qǐng)說明理由.

【答案】1;(2)點(diǎn)的坐標(biāo)為;(3的值為

【解析】

1)直接將AB、C三點(diǎn)坐標(biāo)代入拋物線的解析式中求出待定系數(shù)即可.
2)由圖知:AB點(diǎn)關(guān)于拋物線的對(duì)稱軸對(duì)稱,那么根據(jù)拋物線的對(duì)稱性以及兩點(diǎn)之間線段最短可知:若連接BC,那么BC與直線l的交點(diǎn)即為符合條件的P點(diǎn).
3)由于QBO的腰和底沒有明確,因此要分三種情況來討論:①QB=BO、②QB=QO、③QO=BO;可先設(shè)出M點(diǎn)的坐標(biāo),然后用M點(diǎn)縱坐標(biāo)表示QBO的三邊長,再按上面的三種情況列式求解即可.

解:經(jīng)過

解之得:

函數(shù)解析式為

如圖,拋物線的對(duì)稱軸是直線

當(dāng)點(diǎn)落在線段上時(shí),

最小,的周長最小.

設(shè)拋物線的對(duì)稱軸與軸的交點(diǎn)為

,得

所以點(diǎn)的坐標(biāo)為

過點(diǎn)于點(diǎn)

則根據(jù)直徑所對(duì)圓周角是直角的性質(zhì),知點(diǎn)在以為直徑的圓上

可證是直角三角形

可得

,得

分三種情況:

①當(dāng)時(shí),

點(diǎn)垂直平分線上,是的中點(diǎn),

解得

②當(dāng)時(shí),

解得:

③當(dāng)時(shí),

由于,

從而點(diǎn)的延長線上,

這樣點(diǎn)不在線段

綜上所述,的值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一列高鐵列車從甲地勻速駛往乙地,一列特快列車從乙地勻速駛往甲地,兩車同時(shí)出發(fā),設(shè)特快列車行駛的時(shí)間為x(單位:時(shí)),特快列車與高鐵列車之間的距離為y(單位:千米),yx之間的函數(shù)關(guān)系如圖所示,則圖中線段CD所表示的yx之間的函數(shù)關(guān)系式是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會(huì)為了解本校學(xué)生每天做作業(yè)所用的時(shí)間情況,采用問卷的方式對(duì)一部分學(xué)生進(jìn)行調(diào)查,在確定調(diào)查對(duì)象時(shí),大家提出以下幾種方案:

A)對(duì)各班班長進(jìn)行調(diào)查;

B)對(duì)某班的全體學(xué)生進(jìn)行調(diào)查;

C)從全校每班隨機(jī)抽取5名學(xué)生進(jìn)行調(diào)查.

在問卷調(diào)查時(shí),每位被調(diào)查的學(xué)生都選擇了問卷中適合自己的一個(gè)時(shí)間,學(xué)生會(huì)收集到的數(shù)據(jù)整理后繪制成如圖所示的條形統(tǒng)計(jì)圖.

1)為了使收集到的數(shù)據(jù)具有代表性,學(xué)生會(huì)在確定調(diào)查對(duì)象時(shí)選擇了方案____(填ABC);

2)被調(diào)查的學(xué)生每天做作業(yè)所用的時(shí)間的眾數(shù)為_______小時(shí),中位數(shù)為______小時(shí);

3)根據(jù)以上統(tǒng)計(jì)結(jié)果,估計(jì)該校800名學(xué)生中每天做作業(yè)時(shí)間用1.5小時(shí)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長是4,點(diǎn)PAD邊的中點(diǎn),點(diǎn)E是正方形邊上的一點(diǎn),若△PBE是等腰三角形,則腰長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:我們學(xué)習(xí)等邊三角形時(shí)得到直角三角形的一個(gè)性質(zhì):在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半.即:如圖1,在RtABC中,∠ACB=90°,ABC=30°,則:AC=AB.

探究結(jié)論:小明同學(xué)對(duì)以上結(jié)論作了進(jìn)一步研究.

(1)如圖1,連接AB邊上中線CE,由于CE=AB,易得結(jié)論:①△ACE為等邊三角形;②BECE之間的數(shù)量關(guān)系為  

(2)如圖2,點(diǎn)D是邊CB上任意一點(diǎn),連接AD,作等邊ADE,且點(diǎn)E在∠ACB的內(nèi)部,連接BE.試探究線段BEDE之間的數(shù)量關(guān)系,寫出你的猜想并加以證明.

(3)當(dāng)點(diǎn)D為邊CB延長線上任意一點(diǎn)時(shí),在(2)條件的基礎(chǔ)上,線段BEDE之間存在怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論  

拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣,1),點(diǎn)Bx軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等邊ABC,當(dāng)C點(diǎn)在第一象限內(nèi),且B(2,0)時(shí),求C點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,以AC為直徑作⊙O,D為⊙O上一點(diǎn),連接AD、BDCD,且BDAB

1)求證:∠ABD2BDC

2)若D為弧AC的中點(diǎn),求tanBDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的進(jìn)步和網(wǎng)絡(luò)資源的豐富,在線學(xué)習(xí)已經(jīng)成為更多人的自主學(xué)習(xí)選擇.某校計(jì)劃為學(xué)生提供以下四類在線學(xué)習(xí)方式:在線閱讀、在線聽課、在線答題和在線討論.為了解學(xué)生需求,該校隨機(jī)對(duì)本校部分學(xué)生進(jìn)行了“你對(duì)哪類在線學(xué)習(xí)方式最感興趣”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

(1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)求扇形統(tǒng)計(jì)圖中“在線討論”對(duì)應(yīng)的扇形圓心角的度數(shù);

(3)該校共有學(xué)生2700人,請(qǐng)你估計(jì)該校對(duì)在線閱讀最感興趣的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別是A32)、B13).△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到A1OB1

1)畫出旋轉(zhuǎn)后的圖形;

2)點(diǎn)A1的坐標(biāo)為   

3)求線段OB在旋轉(zhuǎn)過程中所掃過的圖形面積(寫過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表顯示的是某種大豆在相同條件下的發(fā)芽試驗(yàn)結(jié)果:

每批粒數(shù)n

100

300

400

600

1000

2000

3000

發(fā)芽的粒數(shù)m

96

282

382

570

948

1904

2850

發(fā)芽的頻率

0.960

0.940

0.955

0.950

0.948

0.952

0.950

下面有三個(gè)推斷:

當(dāng)n為400時(shí),發(fā)芽的大豆粒數(shù)為382,發(fā)芽的頻率為0.955,所以大豆發(fā)芽的概率是0.955;

隨著試驗(yàn)時(shí)大豆的粒數(shù)的增加,大豆發(fā)芽的頻率總在0.95附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)大豆發(fā)芽的概率是0.95;

若大豆粒數(shù)n為4000,估計(jì)大豆發(fā)芽的粒數(shù)大約為3800粒.

其中推斷合理的是( 。

A. ①②③ B. ①② C. ①③ D. ②③

查看答案和解析>>

同步練習(xí)冊答案